

Extensible Firmware Interface
Specification,

Version 1.10

Specification Update

Version -001
November 26, 2003

The Extensible Firmware Interface Specification, version 1.10, may contain design defects or errors
known as errata, which may cause the product to deviate from published specifications. Current
characterized errata are documented in this Specification Update.

EFI 1.10 Specification Update

ii November 2003 Version -001

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1998–2003, Intel Corporation.

Version -001 November 2003 iii

Revision History

Revision Revision History Date
-001 This document is the first Specification Update for the EFI

Specification, version 1.10 (final).
11/26/03

EFI 1.10 Specification Update

iv November 2003 Version -001

Preface

This document is an update to the Extensible Firmware Interface Specification, version 1.10. This
document is a compilation of documentation errata and specification clarifications and changes. It
is intended for software developers of applications, operating systems, or tools.
We have endeavored to include all documented errata in the consolidation process; however, we
make no representations or warranties concerning the completeness of the Specification Update.
This document may also contain information that was not previously published.

Nomenclature
Specification Changes are modifications to the current published specifications. These changes
will be incorporated in the next release of the specifications.
Errata are design defects or errors that may cause EFI’s behavior to deviate from published
specifications.
Specification Clarifications and Corrections describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications and
corrections will be incorporated in the next release of the specifications.
Documentation Changes include typos, errors, or omissions from the current published
specifications.

Version -001 November 2003 v

Contents

Revision History ..iii
Preface .. iv

Nomenclature... iv

EFI 1.10 Specification Update
General Information .. 7

Summary Table of Changes ... 7

Specification Changes.. 13
Appendix E: 32/64-Bit UNDI Specification .. 13

Errata .. 15

Specification Clarifications and Corrections ... 17
Chapter 2: Overview ... 17
Chapter 3: Boot Manager.. 17
Chapter 4: EFI System Table.. 18
Chapter 5: Boot Services ... 18
Chapter 6: Runtime Services ... 30
Chapter 8: Protocols – Device Path Protocol... 32
Chapter 9: Protocols – EFI Driver Model ... 32
Chapter 10: Protocols – Console Support.. 37
Chapter 11: Protocols – Bootable Image Support.. 39
Chapter 12: Protocols – PCI Bus Support.. 44
Chapter 14: Protocols – USB Support .. 48
Chapter 15: Protocols – Network Support.. 48
Chapter 17: Protocols – Compression Algorithm Specification.. 51
Chapter 18: Protocols – Device I/O Protocol ... 51
Chapter 19: EFI Byte Code Virtual Machine .. 52
Appendix B: Console.. 53
Appendix E: 32/64-Bit UNDI Specification ... 53
Glossary .. 62

Documentation Changes.. 63
Chapter 3: Boot Manager... 63
Chapter 9: Protocols – EFI Driver Model ... 63
Chapter 12: Protocols – PCI Bus Support.. 63

Tables
Table 1. Summary of Changes to EFI 1.10 Specification .. 7

EFI 1.10 Specification Update

vi November 2003 Version -001

Version -001 November 2003 7

General Information

This document contains the errata, specification changes and clarifications, and documentation
changes to the Extensible Firmware Interface Specification, version 1.10 (hereafter referred to as
the “EFI 1.10 Specification”). This document contains clarifications and corrections to the EFI 1.10
Specification based on industry feedback.
This document is broken into the following sections:
• Specification changes
• Errata
• Specification clarifications and corrections
• Documentation changes
The specific changes in each section are numbered and grouped by chapter in the EFI 1.10
Specification. In each subsection, changes are listed in order by page number. If a page number is
not listed, then no changes were made to the EFI 1.10 Specification on that page.
This document is intended to be used along with the EFI 1.10 Specification, which is available from
the EFI Web site at:
http://developer.intel.com/technology/efi/

Summary Table of Changes
The following table indicates the specification changes, errata, specification clarifications and
corrections, or documentation changes that apply to the EFI 1.10 Specification.
In the table below and throughout this document, the identification number for the change is in the
format X-N.m, where X-N is the page number (using the chapter-page numbering format; for
example, page 6-4 is the fourth page in chapter 6) and m indicates the specific erratum number.
New errata that are found and included in subsequent releases of this document will be added
sequentially by page number and shaded in the table below.

Table 1. Summary of Changes to EFI 1.10 Specification
No. Plans Specification Changes

E-1.1 Plan fix Delete the note in section E.1 (page E-1)

E-8.1 Plan fix Change the Minor field definition in Table E-4 (page E-8)

No. Plans Errata

 None

No. Plans Specification Clarifications and Corrections

2-10.1 Plan fix Change the last bullet in section 2.3.2 (page 2-10)

3-6.1 Plan fix Change the second paragraph in section 3.2 (page 3-6)

3-6.2 Plan fix Change the fourth paragraph in section 3.2 (page 3-6)

4-8.1 Plan fix Change the IninstallMultipleProtocolInterfaces field in
“Related Definitions” (page 4-8)

continued

http://developer.intel.com/technology/efi/

EFI 1.10 Specification Update

8 November 2003 Version -001

Table 1. Summary of Changes to EFI 1.10 Specification (continued)
No. Plans Specification Clarifications and Corrections (continued)

5-4.1 Plan fix Add lines to the TPL restrictions in Table 5-3 (page 5-4)

5-6.1 Plan fix Change the description of EVT_NOTIFY_WAIT in “Related Definitions”
(page 5-6)

5-6.2 Plan fix Change the description of EVT_NOTIFY_SIGNAL in “Related Definitions”
(page 5-6)

5-6.3 Plan fix Change the description of EVT_SIGNAL_EXIT_BOOT_SERVICES in
“Related Definitions” (page 5-6)

5-6.4 Plan fix Change the description of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
in “Related Definitions” (page 5-6)

5-8.1 Plan fix Change the last paragraph of the “Description” subsection (page 5-8)

5-8.2 Plan fix Change the “Status Codes Returned” table (page 5-8)

5-10.1 Plan fix Change the “Description” subsection (page 5-10)

5-11.1 Plan fix Change the “Description” subsection in its entirety (page 5-11)

5-11.2 Plan fix Change the EFI_INVALID_PARAMETER entry in the “Status Codes
Returned” table (page 5-11)

5-12.1 Plan fix Change the third bullet in the “Description” subsection (page 5-12)

5-13.1 Plan fix Change the description of TriggerTime in the “Parameters” subsection
(page 5-13)

5-28.1 Plan fix Change the “Status Codes Returned” table (page 5-28)

5-36.1 Plan fix Change the “Summary” paragraph (page 5-36)

5-37.1 Plan fix Change the “Status Codes Returned” table (page 5-37)

5-38.1 Plan fix Change the “Summary” paragraph (page 5-38)

5-39.1 Plan fix Change the “Status Codes Returned” table (page 5-39)

5-41.1 Plan fix Change the “Status Codes Returned” table (page 5-41)

5-42.1 Plan fix Change the “Status Codes Returned” table (page 5-42)

5-44.1 Plan fix Change the “Status Codes Returned” table (page 5-44)

5-46.1 Plan fix Change the “Status Codes Returned” table (page 5-46)

5-48.1 Plan fix Change the “Status Codes Returned” table (page 5-48)

5-61.1 Plan fix Change the description of DriverImageHandle in the “Parameters”
subsection (page 5-61)

5-62.1 Plan fix Change the description of Context Override in the “Description” subsection
(page 5-62)

5-67.1 Plan fix Add an entry to the “Status Codes Returned” table (page 5-67)

5-79.1 Plan fix Change the “Status Codes Returned” table (page 5-79)

5-83.1 Plan fix Change the “Summary” paragraph (page 5-83)

5-83.2 Plan fix Delete the second sentence in the first paragraph of the “Description” subsection
(page 5-83)

continued

 General Information

Version -001 November 2003 9

Table 1. Summary of Changes to EFI 1.10 Specification (continued)
No. Plans Specification Clarifications and Corrections (continued)

5-84.1 Plan fix Change the “Status Codes Returned” table (page 5-84)

5-85.1 Plan fix Change the first paragraph of the “Description” subsection (page 5-85)

5-91.1 Plan fix Change the “Status Codes Returned” table (page 5-91)

6-5.1 Plan fix Change the third paragraph in the “Description” subsection (page 6-5)

6-17.1 Plan fix Change the first paragraph in the “Description” subsection (page 6-17)

6-19.1 Plan fix Change the “Status Codes Returned” table (page 6-19)

8-11.1 Plan fix Change the description of the Length field in Table 8-14 (page 8-11)

9-19.1 Plan fix Delete the last sentence from the first paragraph in the “Description” subsection
(page 9-19)

9-37.1 Plan fix Change the “Status Codes Returned” table (page 9-37)

9-39.1 Plan fix Change the “Status Codes Returned” table (page 9-39)

9-42.1 Plan fix Change the “Status Codes Returned” table (page 9-42)

9-46.1 Plan fix Change the “Status Codes Returned” table (page 9-46)

9-51.1 Plan fix Change the “Status Codes Returned” table (page 9-51)

10-17.1 Plan fix Change the second paragraph of the “Description” subsection (page 10-17)

10-19.1 Plan fix Change the description of Attribute in the “Parameters” subsection (page
10-19)

10-20.1 Plan fix Delete EFI_UNSUPPORTED from the “Status Codes Returned” table
(page 10-20)

10-28.1 Plan fix Change the “Status Codes Returned” table (page 10-28)

10-33.1 Plan fix Change the EfiUgaVideoFill entry in Table 10-4 (page 10-33)

11-3.1 Plan fix Change the EFI_NO_SUCH_MEDIA return code (page 11-3)

11-9.1 Plan fix Change the description of the Revision field in Table 11-1 (page 11-9)

11-26.1 Plan fix Change the “Status Codes Returned” table (page 11-26)

11-27.1 Plan fix Change the “Status Codes Returned” table (page 11-27)

11-28.1 Plan fix Change the “Status Codes Returned” table (page 11-28)

11-29.1 Plan fix Change the “Status Codes Returned” table (page 11-29)

11-31.1 Plan fix Change the “Description” subsection in its entirety (page 11-31)

11-31.2 Plan fix Change the “Status Codes Returned” table (page 11-31)

11-58.1 Plan fix Change the description of the StrToFat() API (page 11-58)

12-11.1 Plan fix Add three attributes and descriptions to the list of PCI Root Bridge I/O Protocol
Attribute bits in the “Related Definitions” subsection (page 12-11)

12-12.1 Plan fix Change the descriptions of the IDE attributes in the “Related Definitions”
subsection (page 12-12)

12-60.1 Plan fix Add three attributes and descriptions to the list of PCI Root Bridge I/O Protocol
Attribute bits in the “Related Definitions” subsection (page 12-60)

continued

EFI 1.10 Specification Update

10 November 2003 Version -001

Table 1. Summary of Changes to EFI 1.10 Specification (continued)
No. Plans Specification Clarifications and Corrections (continued)

12-61.1 Plan fix Change the descriptions of the IDE attributes in the “Related Definitions”
subsection (page 12-61)

12-70.1 Plan fix Change the first sentence in the last paragraph of the “Description” subsection
(page 12-70)

12-80.1 Plan fix Delete the status code EFI_INVALID_PARAMETER from the “Status Codes
Returned” table (page 12-80)

14-20.1 Plan fix Change the fourth item in the numbered list in the “Description” subsection
(page 14-20)

15-13.1 Plan fix Change the “Status Codes Returned” table (page 15-13)

15-16.1 Plan fix Change the “Status Codes Returned” table (page 15-16)

15-17.1 Plan fix Change the “Status Codes Returned” table (page 15-17)

15-50.1 Plan fix Change the BufferSize parameter in the “Prototype” subsection from
UINTN to UINT64 (page 15-50)

17-18.1 Plan fix Change the “Status Codes Returned” table (page 17-18)

18-3.1 Plan fix Change the definition of EFI_IO_WIDTH in the “Related Definitions”
subsection (page 18-3)

18-5.1 Plan fix Change the description of Buffer in the “Parameters” subsection (page 18-5)

19-61.1 Plan fix Replace “PE32+” with “PE32” (page 19-61)

19-62.1 Plan fix Replace “PE32+” with “PE32” (page 19-62)

19-65.1 Plan fix Replace “PE32+” with “PE32” (page 19-65)

19-68.1 Plan fix Replace “PE32+” with “PE32” (page 19-68)

19-74.1 Plan fix Replace “PE32+” with “PE32” (page 19-74)

B-3.1 Plan fix Change the line for Set Mode 80x25 in Table B-2 (page B-3)

E-3.1 Plan fix Update four RFC numbers in Table E-2 (page E-3)

E-3.2 Plan fix Change “BC protocol” to “PXE Base Code Protocol” in Table E-2 (page E-3)

E-4.1 Plan fix Change “BC protocol” to “PXE Base Code Protocol” in Table E-2 (page E-4)

E-32.1 Plan fix Replace “RFC 1700” with “RFC 3232” (page E-32)

E-38.1 Plan fix Change the direction of the Shutdown and Stop state transition arrows in
Figure E-6 (page E-38)

E-41.1 Plan fix Replace the last two paragraphs in section E.4.2 (page E-41)

E-44.1 Plan fix Replace the “Preparing the CPB” subsection in its entirety (page E-44)

E-52.1 Plan fix Change three #define statements (page E-52)

Gloss-4.1 Plan fix Replace “PE32+” with “PE32” in the EBC Image definition (page Glossary-4)

continued

 General Information

Version -001 November 2003 11

Table 1. Summary of Changes to EFI 1.10 Specification (continued)
No. Plans Documentation Changes

3-5.1 Doc Delete the hyphen in the heading text of section 3.2 (page 3-5)

9-42.1 Doc Change “attempt” to “attempting” in the EFI_DEVICE_ERROR status code
description (page 9-42)

12-96.1 Doc Change “being in” to “begin on” in the tenth bullet (page 12-96)

12-96.2 Doc Change “is” to “in” in the first sentence of the twelfth bullet (page 12-96)

Codes used in summary table:
Doc: Document change or update that will be implemented.
Plan fix: This erratum may be fixed in a future revision of the specification.
Fixed: This erratum has been fixed previously.
No fix: There are no plans to fix this erratum.

EFI 1.10 Specification Update

12 November 2003 Version -001

Version -001 November 2003 13

Specification Changes

Appendix E: 32/64-Bit UNDI Specification

E-1.1 Delete the note in section E.1 (page E-1)
Delete the note in section E.1, “Introduction.” This version of the EFI Specification is the release
version of the 32/64-bit UNDI Specification.

E-8.1 Change the Minor field definition in Table E-4 (page E-8)
In section E.2.1, “32/64-bit UNDI Interface,” change the Minor field definition in Table E-4
FROM:

Minor 0x00 UNDI command interface minor revision

TO:

Minor Varies UNDI command interface. Minor revision number.
0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The
callback interface defined in the UNDI Start command is required.
0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The
callback interface defined in the UNDI Start command is required.

EFI 1.10 Specification Update

14 November 2003 Version -001

Version -001 November 2003 15

Errata

There are currently no errata in the EFI 1.10 Specification.

EFI 1.10 Specification Update

16 November 2003 Version -001

Version -001 November 2003 17

Specification Clarifications and Corrections

Chapter 2: Overview

2-10.1 Change the last bullet in section 2.3.2 (page 2-10)
In section 2.3.2, “IA-32 Platforms,” change the last bullet FROM:

• ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS or EfiFirmareReserved. The cacheability attributes for
ACPI tables loaded at runtime (via ACPI LoadTable) should be defined in the EFI
memory map. If no information about the table location exists in the EFI memory map,
the table is assumed to be noncached.

TO:
• ACPI tables loaded at runtime must be contained in memory of type

EfiACPIMemoryNVS or EfiReservedMemoryType. The cacheability attributes
for ACPI tables loaded at runtime (via ACPI LoadTable) should be defined in the EFI
memory map. If no information about the table location exists in the EFI memory map,
the table is assumed to be noncached.

Chapter 3: Boot Manager

3-6.1 Change the second paragraph in section 3.2 (page 3-6)
In section 3.2, “Globally-Defined Variables,” change the second paragraph FROM:

The Lang variable contains the 3-character (8-bit ASCII characters) ISO-639-2 language
code that the machine has been configured for. This value may be changed to any value
supported by LangCodes; however, the change does not take effect until the next boot. If
the language code is set to an unsupported value, the firmware will choose a supported
default at initialization and set Lang to a supported value.

TO:
The Lang variable contains the 3-character (8-bit ASCII characters) ISO-639-2 language
code that the machine has been configured for. This value may be changed to any value
supported by LangCodes. If this change is made in the preboot environment, then the
change will take effect immediately. If this change is made at OS runtime, then the change
does not take effect until the next boot. If the language code is set to an unsupported value,
the firmware will choose a supported default at initialization and set Lang to a supported
value.

3-6.2 Change the fourth paragraph in section 3.2 (page 3-6)
In section 3.2, “Globally-Defined Variables,” change the fourth paragraph FROM:

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH
descriptor that defines the default device to use on boot. Changes to these values do not take

EFI 1.10 Specification Update

18 November 2003 Version -001

effect until the next boot. If the firmware cannot resolve the device path, it is allowed to
automatically replace the value(s) as needed to provide a console for the system.

TO:
The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH
descriptor that defines the default device to use on boot. Changes to these values made in the
preboot environment take effect immediately. Changes to these values at OS runtime do not
take effect until the next boot. If the firmware cannot resolve the device path, it is allowed to
automatically replace the value(s) as needed to provide a console for the system.

Chapter 4: EFI System Table

4-8.1 Change the IninstallMultipleProtocolInterfaces field in “Related
Definitions” (page 4-8)

In the “Related Definitions” subsection in section 4.4, “EFI Boot Services Table,” change the
following field of the EFI Boot Services Table FROM:

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES
 IninstallMultipleProtocolInterfaces;

TO:
EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES
 UninstallMultipleProtocolInterfaces;

Chapter 5: Boot Services

5-4.1 Add lines to the TPL restrictions in Table 5-3 (page 5-4)
In section 5.1, “Event, Timer, and Task Priority Services,” add the following lines to the TPL
restrictions in Table 5-3, before the line with WaitForEvent():

CreateEvent() < TPL_HIGH_LEVEL

CloseEvent() < TPL_HIGH_LEVEL

CheckEvent() < TPL_HIGH_LEVEL

SetTimer() < TPL_HIGH_LEVEL

5-6.1 Change the description of EVT_NOTIFY_WAIT in “Related Definitions”
(page 5-6)

In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the description
of EVT_NOTIFY_WAIT in the “Related Definitions” subsection FROM:

EVT_NOTIFY_WAIT The event’s NotifyFunction is to be invoked whenever the
event is being waited on via WaitForEvent() or
CheckEvent().

TO:

 Specification Clarifications and Corrections

Version -001 November 2003 19

EVT_NOTIFY_WAIT If an event of this type is not already in the signaled state, then
the event’s NotificationFunction will be queued at the
event’s NotifyTpl whenever the event is being waited on via
WaitForEvent() or CheckEvent().

5-6.2 Change the description of EVT_NOTIFY_SIGNAL in “Related
Definitions” (page 5-6)

In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the description
of EVT_NOTIFY_SIGNAL in the “Related Definitions” subsection FROM:

EVT_NOTIFY_SIGNAL
The event’s NotifyFunction is to be invoked whenever the
event is signaled via SignalEvent().

TO:
EVT_NOTIFY_SIGNAL The event’s NotifyFunction is queued whenever the event

is signaled.

5-6.3 Change the description of EVT_SIGNAL_EXIT_BOOT_SERVICES in
“Related Definitions” (page 5-6)

In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the description
of EVT_SIGNAL_EXIT_BOOT_SERVICES in the “Related Definitions” subsection FROM:

EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This type cannot be used
with any other EVT bit type. The notification function for this
event is not allowed to use the Memory Allocation Services, or
call any functions that use the Memory Allocation Services,
because these services modify the current memory map.

TO:
EVT_SIGNAL_EXIT_BOOT_SERVICES

This event is to be notified by the system when
ExitBootServices() is invoked. This event is of type
EVT_NOTIFY_SIGNAL and should not be combined with any
other event types. The notification function for this event is not
allowed to use the Memory Allocation Services, or call any
functions that use the Memory Allocation Services, because
these services modify the current memory map.

EFI 1.10 Specification Update

20 November 2003 Version -001

5-6.4 Change the description of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE in
“Related Definitions” (page 5-6)

In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the description
of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE in the “Related Definitions” subsection
FROM:

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This type cannot
be used with any other EVT bit type. See the discussion of
EVT_RUNTIME.

TO:
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE

The event is to be notified by the system when
SetVirtualAddressMap() is performed. This event type
is a composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME,
and EVT_RUNTIME_CONTEXT and should not be combined
with any other event types.

5-8.1 Change the last paragraph of the “Description” subsection
(page 5-8)

In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the last
paragraph of the “Description” subsection FROM:

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag
is specified, the caller does not require any notification concerning the event and the
NotifyTpl, NotifyFunction, and NotifyContext parameters are ignored. If
EVT_NOTIFY_WAIT is specified, then the event is signaled and its notify function is queued
whenever a consumer of the event is waiting for it (via WaitForEvent() or
CheckEvent()). If the EVT_NOTIFY_SIGNAL flag is specified then the event’s notify
function is queued whenever the event is signaled.

TO:
The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag
is specified, the caller does not require any notification concerning the event and the
NotifyTpl, NotifyFunction, and NotifyContext parameters are ignored. If
EVT_NOTIFY_WAIT is specified and the event is not in the signaled state, then its notify
function is queued whenever a consumer of the event is waiting for it (via
WaitForEvent() or CheckEvent()). If the EVT_NOTIFY_SIGNAL flag is
specified, then the event’s notify function is queued whenever the event is signaled.

 Specification Clarifications and Corrections

Version -001 November 2003 21

5-8.2 Change the “Status Codes Returned” table (page 5-8)
In section 5.1, “Event, Timer, and Task Priority Services – CreateEvent(),” change the “Status
Codes Returned” table FROM:

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_OUT_OF_RESOURCES The event could not be allocated.

TO:

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and
EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyFunction is
NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyTpl is not a
supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.

5-10.1 Change the “Description” subsection (page 5-10)
In section 5.1, “Event, Timer, and Task Priority Services – SignalEvent(),” change the
“Description” subsection FROM:

The supplied Event is signaled and, if the event has a signal notification function, it is
scheduled to be invoked at the event’s notification task priority level. SignalEvent()
may be invoked from any task priority level.

TO:
The supplied Event is placed in the signaled state. If Event is already in the signaled state,
then EFI_SUCCESS is returned. If Event is of type EVT_NOTIFY_SIGNAL, then the
event’s notification function is scheduled to be invoked at the event’s notification task
priority level. SignalEvent() may be invoked from any task priority level.

5-11.1 Change the “Description” subsection in its entirety (page 5-11)
In section 5.1, “Event, Timer, and Task Priority Services – WaitForEvent(),” change the
“Description” subsection in its entirety to the following:

This function must be called at priority level TPL_APPLICATION. If an attempt is made to
call it at any other priority level, EFI_UNSUPPORTED is returned.
The list of events in the Event array are evaluated in order from first to last, and this
evaluation is repeated until an event is signaled or an error is detected. The following checks
are performed on each event in the Event array.

EFI 1.10 Specification Update

22 November 2003 Version -001

• If an event if of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is
returned and Index indicates the event that caused the failure.

• If an event is in the signaled state, the signaled state is cleared and EFI_SUCCESS is
returned, and Index indicates the event that was signaled.

• If an event is not in the signaled state but does have a notification function, the
notification function is queued at the event’s notification task priority level. If the
execution of the event’s notification function causes the event to be signaled, then the
signaled state is cleared, EFI_SUCCESS is returned, and Index indicates the event that
was signaled.

To wait for a specified time, a timer event must be included in the Event array.
To check if an event is signaled without waiting, an already signaled event can be used as the
last event in the list being checked, or the CheckEvent() interface may be used.

5-11.2 Change the EFI_INVALID_PARAMETER entry in the “Status Codes
Returned” table (page 5-11)

In section 5.1, “Event, Timer, and Task Priority Services – WaitForEvent(),” change the entry for
EFI_INVALID_PARAMETER in the “Status Codes Returned” table FROM:

EFI_INVALID_PARAMETER The event indicated by Index has a notification function or
Event was not a valid type.

TO:

EFI_INVALID_PARAMETER NumberOfEvents is 0.

EFI_INVALID_PARAMETER The event indicated by Index is of type
EVT_NOTIFY_SIGNAL.

5-12.1 Change the third bullet in the “Description” subsection (page 5-12)
In section 5.1, “Event, Timer, and Task Priority Services – CheckEvent(),” change the third bullet
in the “Description” subsection FROM:

• If Event is not in the signaled state but does have a notification function, the function
is executed. If that causes Event to be signaled, it is cleared and EFI_SUCCESS is
returned; if it does not cause Event to be signaled, EFI_NOT_READY is returned.

TO:
• If Event is not in the signaled state but does have a notification function, the

notification function is queued at the event’s notification task priority level. If the
execution of the notification function causes Event to be signaled, then the signaled
state is cleared and EFI_SUCCESS is returned; if the Event is not signaled, then
EFI_NOT_READY is returned.

 Specification Clarifications and Corrections

Version -001 November 2003 23

5-13.1 Change the description of TriggerTime in the “Parameters”
subsection (page 5-13)

In section 5.1, “Event, Timer, and Task Priority Services – SetTimer(),” change the description of
TriggerTime in the “Parameters” subsection FROM:

TriggerTime The number of 100ns units until the timer expires.
TO:

TriggerTime The number of 100ns units until the timer expires. A
TriggerTime of 0 is legal. If Type is TimerRelative
and TriggerTime is 0, then the timer event will be signaled
on the next timer tick. If Type is TimerPeriodic and
TriggerTime is 0, then the timer event will be signaled on
every timer tick.

5-28.1 Change the “Status Codes Returned” table (page 5-28)
In section 5.2, “Memory Allocation Services – GetMemoryMap(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in
MemoryMapSize.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in
MemoryMapSize.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER The MemoryMap buffer is not too small and MemoryMap is
NULL.

5-36.1 Change the “Summary” paragraph (page 5-36)
In section 5.3, “Protocol Handler Services – InstallProtocolInterface(),” change the “Summary”
paragraph FROM:

Installs a protocol interface on a device handle. If the handle does not exist, it is created and
added to the list of handles in the system.

TO:
Installs a protocol interface on a device handle. If the handle does not exist, it is created and
added to the list of handles in the system.
InstallMultipleProtocolInterfaces() performs more error checking than
InstallProtocolInterface(), so it is recommended that

EFI 1.10 Specification Update

24 November 2003 Version -001

InstallMultipleProtocolInterfaces() be used in place of
InstallProtocolInterface().

5-37.1 Change the “Status Codes Returned” table (page 5-37)
In section 5.3, “Protocol Handler Services – InstallProtocolInterface(),” change the “Status Codes
Returned” table FROM:
EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not
EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle
specified by Handle.

5-38.1 Change the “Summary” paragraph (page 5-38)
In section 5.3.1, “Protocol Handler Services – UninstallProtocolInterface(),” change the
“Summary” paragraph FROM:

Removes a protocol interface from a device handle.
TO:

Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolInterfaces() be used in place of
UninstallProtocolInterface().

5-39.1 Change the “Status Codes Returned” table (page 5-39)
In section 5.3, “Protocol Handler Services – UninstallProtocolInterface(),” change the “Status
Codes Returned” table FROM:
EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

 Specification Clarifications and Corrections

Version -001 November 2003 25

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

5-41.1 Change the “Status Codes Returned” table (page 5-41)
In section 5.3, “Protocol Handler Services – ReinstallProtocolInterface(),” change the “Status
Codes Returned” table FROM:
EFI_SUCCESS The protocol interface was reinstalled.
EFI_NOT_FOUND The OldInterface on the handle was not found.
EFI_ACCESS_DENIED The protocol interface could not be reinstalled,

because OldInterface is still being used by a
driver that will not release it.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The protocol interface was reinstalled.
EFI_NOT_FOUND The OldInterface on the handle was not found.
EFI_ACCESS_DENIED The protocol interface could not be reinstalled,

because OldInterface is still being used by a
driver that will not release it.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

5-42.1 Change the “Status Codes Returned” table (page 5-42)
In section 5.3.1, “Protocol Handler Services – RegisterProtocolNotify(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Registration is NULL.

EFI 1.10 Specification Update

26 November 2003 Version -001

5-44.1 Change the “Status Codes Returned” table (page 5-44)
In section 5.3.1, “Protocol Handler Services – LocateHandle(),” change the “Status Codes
Returned” table FROM:
EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of
EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and
SearchKey is NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is
NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is
NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Buffer
is NULL.

5-46.1 Change the “Status Codes Returned” table (page 5-46)
In section 5.3.1, “Protocol Handler Services – HandleProtocol(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.

 Specification Clarifications and Corrections

Version -001 November 2003 27

5-48.1 Change the “Status Codes Returned” table (page 5-48)
In section 5.3.1, “Protocol Handler Services – LocateDevicePath(),” change the “Status Codes
Returned” table FROM:
EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER A handle matched the search and Device is NULL.

5-61.1 Change the description of DriverImageHandle in the “Parameters”
subsection (page 5-61)

In section 5.3.1, “Protocol Handler Services – ConnectController(),” change the description of
DriverImageHandle in the “Parameters” subsection FROM:

DriverImageHandle A pointer to an ordered list of driver image handles. The list is
terminated by a NULL image handle. These driver image
handles are candidates for the driver(s) that will manage the
controller specified by ControllerHandle. This is an
optional parameter that may be NULL. This parameter is
typically used to debug new drivers.

TO:
DriverImageHandle A pointer to an ordered list of handles that support the

EFI_DRIVER_BINDING_PROTOCOL. The list is terminated
by a NULL handle value. These handles are candidates for the
Driver Binding Protocol(s) that will manage the controller
specified by ControllerHandle. This is an optional
parameter that may be NULL. This parameter is typically used to
debug new drivers.

5-62.1 Change the description of Context Override in the “Description”
subsection (page 5-62)

In section 5.3.1, “Protocol Handler Services – ConnectController(),” change the description of
Context Override in the “Description” subsection FROM:

1. Context Override : DriverImageHandle is an ordered list of image handles. The
highest priority image handle is the first element of the list, and the lowest priority image
handle is the last element of the list. The list is terminated with a NULL image handle.

TO:

EFI 1.10 Specification Update

28 November 2003 Version -001

1. Context Override : DriverImageHandle is an ordered list of handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The highest priority handle is the first element of
the list, and the lowest priority handle is the last element of the list. The list is terminated
with a NULL handle value.

5-67.1 Add an entry to the “Status Codes Returned” table (page 5-67)
In section 5.3.1, “Protocol Handler Services – DisconnectController(),” add the following entry at
the end of the “Status Codes Returned” table:

EFI_INVALID_PARAMETER DriverImageHandle does not support the
EFI_DRIVER_BINDING_PROTOCOL.

5-79.1 Change the “Status Codes Returned” table (page 5-79)
In section 5.4, “Image Services – LoadImage(),” change the “Status Codes Returned” table FROM:

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

TO:

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND Both SourceBuffer and FilePath are NULL.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is not a valid EFI_HANDLE.

EFI_UNSUPPORTED The image type is not supported.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

 Specification Clarifications and Corrections

Version -001 November 2003 29

5-83.1 Change the “Summary” paragraph (page 5-83)
In section 5.4, “Image Services – Exit(),” change the “Summary” paragraph FROM:

Terminates the currently loaded EFI image and returns control to boot services.
TO:

Terminates a loaded EFI image and returns control to boot services.

5-83.2 Delete the second sentence in the first paragraph of the
“Description” subsection (page 5-83)

In section 5.4, “Image Services – Exit(),” delete the second sentence in the first paragraph of the
“Description” subsection, so it changes FROM (sentence to delete in yellow):

The Exit() function terminates the image referenced by ImageHandle and returns
control to boot services. This function can only be called by the currently executing image.
This function may not be called if the image has already returned from its entry point
(EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all
child images must exit before this image can exit).

TO:
The Exit() function terminates the image referenced by ImageHandle and returns
control to boot services. This function may not be called if the image has already returned
from its entry point (EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that
have not exited (all child images must exit before this image can exit).

5-84.1 Change the “Status Codes Returned” table (page 5-84)
In section 5.4, “Image Services – Exit(),” change the “Status Codes Returned” table FROM:

(Does not return.) Image exit. Control is returned to the StartImage() call that
invoked the image.

EFI_SUCCESS The image was unloaded. Exit() only returns success if the
image has not been started; otherwise, the exit returns to the
StartImage() call that invoked the image.

EFI_INVALID_PARAMETER The specified image is not the current image.

TO:

 (Does not return.) Image exit. Control is returned to the StartImage() call that
invoked the image specified by ImageHandle.

EFI_SUCCESS The image specified by ImageHandle was unloaded. This
condition only occurs for images that have been loaded with
LoadImage() but have not been started with
StartImage().

EFI_INVALID_PARAMETER The image specified by ImageHandle has been loaded and
started with LoadImage() and StartImage(), but the
image is not the currently executing image.

EFI 1.10 Specification Update

30 November 2003 Version -001

5-85.1 Change the first paragraph of the “Description” subsection
(page 5-85)

In section 5.4, “Image Services – ExitBootServices(),” change the first paragraph of the
“Description” subsection FROM:

The ExitBootServices() function is called by the currently executing EFI OS loader
image to terminate all boot services. On success, the loader becomes responsible for the
continued operation of the system.

TO:
The ExitBootServices() function is called by the currently executing EFI OS loader
image to terminate all boot services. On success, the loader becomes responsible for the
continued operation of the system. All events of type
EVT_SIGNAL_EXIT_BOOT_SERVICES must be signaled before
ExitBootServices() returns.

5-91.1 Change the “Status Codes Returned” table (page 5-91)
In section 5.5, “Miscellaneous Boot Services – GetNextMonotonicCount(),” change the “Status
Codes Returned” table FROM:

EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER Count is NULL.

Chapter 6: Runtime Services

6-5.1 Change the third paragraph in the “Description” subsection
(page 6-5)

In section 6.1, “Variable Services – GetNextVariableName(),” change the third paragraph in the
“Description” subsection FROM:

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial
call to GetNextVariableName(). When VariableName is a pointer to a Null
Unicode character, VendorGuid is ignored. GetNextVariableName() cannot be used
as a filter to return variable names with a specific GUID. Instead, the entire list of variables
must be retrieved, and the caller may act as a filter if it chooses. Calls to SetVariable()
between calls to GetNextVariableName() may produce unpredictable results.

TO:

 Specification Clarifications and Corrections

Version -001 November 2003 31

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial
call to GetNextVariableName(). When VariableName is a pointer to a Null
Unicode character, VendorGuid is ignored. GetNextVariableName() cannot be used
as a filter to return variable names with a specific GUID. Instead, the entire list of variables
must be retrieved, and the caller may act as a filter if it chooses. Calls to SetVariable()
between calls to GetNextVariableName() may produce unpredictable results. Passing
in a VariableName parameter that is neither a Null-terminated string nor a value that was
returned on the previous call to GetNextVariableName() may also produce
unpredictable results.

6-17.1 Change the first paragraph in the “Description” subsection
(page 6-17)

In section 6.3, “Virtual Memory Services – SetVirtualAddressMap(),” change the first paragraph in
the “Description” subsection FROM:

The SetVirtualAddressMap() function is used by the OS loader. The function can
only be called at runtime, and is called by the owner of the system’s memory map. I.e., the
component which called ExitBootServices().

TO:
The SetVirtualAddressMap() function is used by the OS loader. The function can
only be called at runtime, and is called by the owner of the system’s memory map. I.e., the
component which called ExitBootServices(). All events of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE must be signaled before
SetVirtualAddressMap() returns.

6-19.1 Change the “Status Codes Returned” table (page 6-19)
In section 6.3, “Virtual Memory Services – ConvertPointer(),” change the “Status Codes Returned”
table FROM:

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part
of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

TO:

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part
of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER Address is NULL.

EFI_INVALID_PARAMETER *Address is NULL and DebugDisposition does
not have the EFI_OPTIONAL_PTR bit set.

EFI 1.10 Specification Update

32 November 2003 Version -001

Chapter 8: Protocols – Device Path Protocol

8-11.1 Change the description of the Length field in Table 8-14
(page 8-11)

In section 8.3.4.5, “USB Device Path,” change the description of the Length field in Table 8-14
FROM:

Length of this structure in bytes. Length is 16 bytes.
TO:

Length of this structure in bytes. Length is 6 bytes.

Chapter 9: Protocols – EFI Driver Model

9-19.1 Delete the last sentence from the first paragraph in the
“Description” subsection (page 9-19)

In section 9.1, “EFI Driver Binding Protocol – Stop()” delete the last sentence from the first
paragraph in the “Description” subsection on page 9-19, so it changes FROM (sentence to delete
in yellow):

If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If,
for some reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned. If ControllerHandle was not started by the
driver specified by This, then EFI_UNSUPPORTED is returned.

TO:
If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If,
for some reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned.

9-37.1 Change the “Status Codes Returned” table (page 9-37)
In section 9.4, “EFI Driver Configuration Protocol – SetOptions(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The driver specified by This successfully set the configuration options
for the controller specified by ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support setting configuration
options for the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

 Specification Clarifications and Corrections

Version -001 November 2003 33

EFI_DEVICE_ERROR A device error occurred while attempt to set the configuration options for
the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.

TO:

EFI_SUCCESS The driver specified by This successfully set the configuration options
for the controller specified by ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is
not NULL.

EFI_UNSUPPORTED The driver specified by This does not support setting configuration
options for the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_DEVICE_ERROR A device error occurred while attempt to set the configuration options for
the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.

9-39.1 Change the “Status Codes Returned” table (page 9-39)
In section 9.4, “EFI Driver Configuration Protocol – OptionsValid(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has a valid set of configuration options.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has an invalid set of configuration options.

EFI 1.10 Specification Update

34 November 2003 Version -001

TO:

EFI_SUCCESS The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has a valid set of configuration options.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is
not NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This
has an invalid set of configuration options.

9-42.1 Change the “Status Codes Returned” table (page 9-42)
In section 9.4, “EFI Driver Configuration Protocol – ForceDefaults(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The driver specified by This successfully forced the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support forcing the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the configuration type
specified by DefaultType.

EFI_DEVICE_ERROR A device error occurred while attempt to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to force the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

TO:

EFI_SUCCESS The driver specified by This successfully forced the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

 Specification Clarifications and Corrections

Version -001 November 2003 35

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is
not NULL.

EFI_UNSUPPORTED The driver specified by This does not support forcing the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the configuration type
specified by DefaultType.

EFI_DEVICE_ERROR A device error occurred while attempt to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to force the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

9-46.1 Change the “Status Codes Returned” table (page 9-46)
In section 9.5, “EFI Driver Diagnostics Protocol – RunDiagnostics(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The controller specified by ControllerHandle and
ChildHandle passed the diagnostic.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.
EFI_INVALID_PARAMETER ErrorType is NULL.
EFI_INVALID_PARAMETER BufferType is NULL.
EFI_INVALID_PARAMETER Buffer is NULL.
EFI_UNSUPPORTED The driver specified by This does not support running diagnostics for

the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle did not pass the diagnostic.

EFI 1.10 Specification Update

36 November 2003 Version -001

TO:

EFI_SUCCESS The controller specified by ControllerHandle and
ChildHandle passed the diagnostic.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.
EFI_INVALID_PARAMETER ErrorType is NULL.
EFI_INVALID_PARAMETER BufferSize is NULL.
EFI_INVALID_PARAMETER Buffer is NULL.
EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is

not NULL.

EFI_UNSUPPORTED The driver specified by This does not support running diagnostics for
the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle did not pass the diagnostic.

9-51.1 Change the “Status Codes Returned” table (page 9-51)
In section 9.6, “EFI Component Name Protocol – GetControllerName(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The Unicode string for the user readable name specified by This,
ControllerHandle, ChildHandle, and Language was
returned in ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.
EFI_INVALID_PARAMETER ControllerName is NULL.
EFI_UNSUPPORTED The driver specified by This is not currently managing the controller

specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

 Specification Clarifications and Corrections

Version -001 November 2003 37

TO:

EFI_SUCCESS The Unicode string for the user readable name specified by This,
ControllerHandle, ChildHandle, and Language was
returned in ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.
EFI_INVALID_PARAMETER ControllerName is NULL.
EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is

not NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

Chapter 10: Protocols – Console Support

10-17.1 Change the second paragraph of the “Description” subsection
(page 10-17)

In section 10.3, “SIMPLE_TEXT_OUTPUT_PROTOCOL – QueryMode(),” change the second
paragraph of the “Description” subsection FROM:

It is required that all output devices support at least 80x25 text mode. This mode is defined to
be mode 0. If the output devices support 80x50, that is defined to be mode 1. Any other text
dimensions supported by the device may then follow as mode 2 and above. (For example, it is
a prerequisite that 80x25 and 80x50 text modes be supported before any other modes are.)

TO:
It is required that all output devices support at least 80x25 text mode. This mode is defined to
be mode 0. If the output devices support 80x50, that is defined to be mode 1. All other text
dimensions supported by the device will follow as modes 2 and above. If an output device
supports modes 2 and above, but does not support 80x50, then querying for mode 1 will
return EFI_UNSUPPORTED.

10.19-1 Change the description of Attribute in the “Parameters”
subsection (page 10-19)

In section 10.3, “SIMPLE_TEXT_OUTPUT_PROTOCOL – SetAttribute(),” change the
description of Attribute in the “Parameters” subsection FROM:

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits
4..6 are the background color. All other bits are undefined and
must be zero. See “Related Definitions” below.

EFI 1.10 Specification Update

38 November 2003 Version -001

TO:
Attribute The attribute to set. Bits 0..3 are the foreground color, and bits

4..6 are the background color. All other bits are reserved. See
“Related Definitions” below.

10-20.1 Delete EFI_UNSUPPORTED from the “Status Codes Returned” table
(page 10-20)

In section 10.3, “SIMPLE_TEXT_OUTPUT_PROTOCOL – SetAttribute(),” delete
EFI_UNSUPPORTED from the “Status Codes Returned” table, so it changes FROM (row to delete
in yellow):

EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The attribute requested is not defined by this specification.

TO:

EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

10-28.1 Change the “Status Codes Returned” table (page 10-28)
In section 10.5, “EFI_UGA_DRAW_PROTOCOL – GetMode(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS Valid mode information was returned.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.
EFI_INVALID_PARAMETER HorizontalResolution, or

VerticalResolution, or RefreshRate, is NULL.

TO:

EFI_SUCCESS Valid mode information was returned.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.
EFI_INVALID_PARAMETER HorizontalResolution is NULL.

EFI_INVALID_PARAMETER VerticalResolution is NULL.

EFI_INVALID_PARAMETER ColorDepth is NULL.

EFI_INVALID_PARAMETER RefreshRate is NULL.

 Specification Clarifications and Corrections

Version -001 November 2003 39

10-33.1 Change the EfiUgaVideoFill entry in Table 10-4 (page 10-33)
In section 10.5, “EFI_UGA_DRAW_PROTOCOL – Blt(),” change the EfiUgaVideoFill entry
in Table 10-4 in the “Description” subsection FROM:
EfiUgaVideoFill Write data from the BltBuffer pixel (SourceX,

SourceY) directly to every pixel of the video display
rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY +
Height). Only one pixel will be used from the
BltBuffer. Delta is NOT used.

TO:

EfiUgaVideoFill Write data from the BltBuffer pixel (0,0) directly to
every pixel of the video display rectangle
(DestinationX, DestinationY)
(DestinationX + Width, DestinationY +
Height). Only one pixel will be used from the
BltBuffer. Delta is NOT used.

Chapter 11: Protocols – Bootable Image Support

11-3.1 Change the EFI_NO_SUCH_MEDIA return code (page 11-3)
In section 11.1, “LOAD_FILE Protocol – LoadFile(),” change the EFI_NO_SUCH_MEDIA return
code in the “Status Codes Returned” table FROM:

EFI_NO_SUCH_MEDIA No medium was present to load the file.

TO:

EFI_NO_MEDIA No medium was present to load the file.

11-9.1 Change the description of the Revision field in Table 11-1
(page 11-9)

In section 11.2.2.1, “EFI Partition Header,” change the description of the Revision field in
Table 11-1 FROM:
Revision 8 4 The specification revision number that this header

complies to. For version 1.0 of the specification
the correct value is 0x00010000.

TO:

EFI 1.10 Specification Update

40 November 2003 Version -001

Revision 8 4 The revision number for this header. This revision
value is not related to the EFI Specification
version. This header is version 1.0, so the correct
value is 0x00010000.

11-26.1 Change the “Status Codes Returned” table (page 11-26)
In section 11.4, “EFI_FILE Protocol – Read(),” change the “Status Codes Returned” table FROM:

EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the
current directory entry. BufferSize has been
updated with the size needed to complete the
request.

TO:

EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the end
of the file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the
current directory entry. BufferSize has been
updated with the size needed to complete the
request.

11-27.1 Change the “Status Codes Returned” table (page 11-27)
In section 11.4, “EFI_FILE Protocol – Write(),” change the “Status Codes Returned” table FROM:

EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

TO:

 Specification Clarifications and Corrections

Version -001 November 2003 41

EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

11-28.1 Change the “Status Codes Returned” table (page 11-28)
In section 11.4, “EFI_FILE Protocol – SetPosition(),” change the “Status Codes Returned” table
FROM:

EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

TO:

EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

EFI_DEVICE_ERROR An attempt was made to set the position of a deleted file.

11-29.1 Change the “Status Codes Returned” table (page 11-29)
In section 11.4, “EFI_FILE Protocol – GetPosition(),” change the “Status Codes Returned” table
FROM:

EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

TO:

EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

EFI_DEVICE_ERROR An attempt was made to get the position from a deleted file.

11-31.1 Change the “Description” subsection in its entirety (page 11-31)
In section 11.4, “EFI_FILE Protocol – SetInfo(),” change the “Description” subsection in its
entirety FROM:

The SetInfo() function sets information of type InformationType on the requested
file.

TO:

EFI 1.10 Specification Update

42 November 2003 Version -001

The SetInfo() function sets information of type InformationType on the requested
file.
Because a read-only file can be opened only in read-only mode, an InformationType of
EFI_FILE_INFO_ID can be used with a read-only file because this method is the only one
that can be used to convert a read-only file to a read-write file. In this circumstance, only the
Attribute field of the EFI_FILE_INFO structure may be modified. One or more calls
to SetInfo() to change the Attribute field are permitted before it is closed. The file
attributes will be valid the next time the file is opened with Open().
An InformationType of EFI_FILE_SYSTEM_INFO_ID or
EFI_FILE_SYSTEM_VOLUME_LABEL_ID may not be used on read-only media.

11-31.2 Change the “Status Codes Returned” table (page 11-31)
In section 11.4, “EFI_FILE Protocol – SetInfo(),” change the “Status Codes Returned” table
FROM:

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type
indicated by InformationType.

TO:

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED InformationType is
EFI_FILE_INFO_ID and the media is read-
only.

EFI_WRITE_PROTECTED InformationType is EFI_FILE_
SYSTEM_INFO_ID and the media is read only.

EFI_WRITE_PROTECTED InformationType is EFI_FILE_
SYSTEM_VOLUME_LABEL_ID and the media
is read-only.

EFI_ACCESS_DENIED An attempt is made to change the name of a file to a
file that is already present.

 Specification Clarifications and Corrections

Version -001 November 2003 43

EFI_ACCESS_DENIED An attempt is being made to change the
EFI_FILE_DIRECTORY Attribute.

EFI_ACCESS_DENIED An attempt is being made to change the size of a
directory.

EFI_ACCESS_DENIED InformationType is
EFI_FILE_INFO_ID and the file was opened
read-only and an attempt is being made to modify a
field other than Attribute.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type
indicated by InformationType.

11-58.1 Change the description of the StrToFat() API (page 11-58)
In section 11.7, “UNICODE_COLLATION Protocol – StrToFat(),” change the description of this
API in its entirety to the following (specific changes in yellow):

UNICODE_COLLATION.StrToFat()

Summary
Converts a Null-terminated Unicode string to legal characters in a FAT filename using an OEM
character set.

Prototype
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (
 IN UNICODE_COLLATION_INTERFACE *This,
 IN CHAR16 *String,
 IN UINTN FatSize,
 OUT CHAR8 *Fat
);

Parameters
This A pointer to the UNICODE_COLLATION_INTERFACE

instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 11.7.

String A pointer to a Null-terminated Unicode string.
FatSize The size of the string Fat in bytes.
Fat A pointer to a string that contains the converted version of

String using legal FAT characters from an OEM character set.

Description
This function converts the Unicode characters from String into legal FAT characters in an OEM
character set and stores then in the string Fat. This conversion continues until either FatSize

EFI 1.10 Specification Update

44 November 2003 Version -001

bytes are stored in Fat, or the end of String is reached. The Unicode characters ‘.’ (period) and
‘ ’ (space) are ignored for this conversion. Unicode characters that map to an illegal FAT character
are substituted with an ‘_’. If no valid mapping from a Unicode character to an OEM character is
available, then it is also substituted with an ‘_’. If any of the Unicode characters conversions are
substituted with a ‘_’, then TRUE is returned. Otherwise FALSE is returned.

Status Codes Returned
TRUE One or more conversions failed and were substituted with ‘_’.

FALSE None of the conversions failed.

Chapter 12: Protocols – PCI Bus Support

12-11.1 Add three attributes and descriptions to the list of PCI Root Bridge
I/O Protocol Attribute bits in the “Related Definitions” subsection
(page 12-11)

In section 12.2, “EFI PCI Root Bridge I/O Protocol,” add the following three attributes and
descriptions to the end of the list of PCI Root Bridge I/O Protocol Attribute bits in the “Related
Definitions” subsection:
#define EFI_PCI_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_ATTRIBUTE_VGA_IO_16 0x20000
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 0x40000

EFI_PCI_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded onto a
PCI root bridge using a 16-bit address decoder on address bits 0..15. Address bits 16..31
must be zero. This bit is used to forward I/O cycles for legacy ISA devices onto a PCI
root bridge. This bit may not be combined with EFI_PCI_ATTRIBUTE_ISA_IO.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the VGA
palette registers onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–0x3DF
are forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a VGA
controller onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.
Because EFI_PCI_ATTRIBUTE_VGA_IO_16 also includes the I/O range described
by EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16, the

 Specification Clarifications and Corrections

Version -001 November 2003 45

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_ATTRIBUTE_VGA_IO_16 is set.

12-12.1 Change the descriptions of the IDE attributes in the “Related
Definitions” subsection (page 12-12)

In section 12.1.1, “EFI PCI Root Bridge I/O Protocol,” change the descriptions of the IDE
attributes in the “Related Definitions” subsection FROM:
EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Primary IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Secondary IDE controller onto a PCI root bridge.

TO:
EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0–0x1F7 and 0x3F6–0x3F7
are forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Primary
IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170–0x177 and 0x376–0x377 are
forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Secondary
IDE controller onto a PCI root bridge.

12-60.1 Add three attributes and descriptions to the list of PCI I/O Protocol
Attribute bits in the “Related Definitions” subsection (page 12-60)

In section 12.4, “EFI PCI I/O Protocol,” add the following three attributes and descriptions to the
end of the list of PCI I/O Protocol Attribute bits:
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 0x40000

EFI 1.10 Specification Update

46 November 2003 Version -001

EFI_PCI_IO_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to the
PCI controller using a 16-bit address decoder on address bits 0..15. Address bits 16..31
must be zero. This bit is used to forward I/O cycles for legacy ISA devices. If this bit is
set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles. This bit may not be combined with EFI_PCI_IO_ATTRIBUTE_ISA_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the VGA
palette registers on a PCI controller. If this bit is set, then the PCI Host Bus Controller
and all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI
Controller are configured to forward these PCI I/O cycles. This bit may not be combined
with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–0x3DF
are forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a VGA
controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and all
the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles. This bit may not be combined with
EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 is set.

12-61.1 Change the descriptions of EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO
and EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO in “Related
Definitions” (page 12-61)

In section 12.4, “EFI PCI I/O Protocol,” change the descriptions of the IDE attributes
EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO and
EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO in the “Related Definitions” subsection
FROM:
EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded to a PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Primary IDE controller to a PCI controller. If this bit is
set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI

 Specification Clarifications and Corrections

Version -001 November 2003 47

Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded to a PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a Secondary IDE controller to a PCI controller. If this bit
is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles.

TO:
EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Primary
IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Secondary
IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI I/O cycles.

12-70.1 Change the first sentence in the last paragraph of the
“Description” subsection (page 12-70)

In section 12.4, “EFI_PCI_IO_PROTOCOL – Mem.Read() and Mem.Write(),” change the start of
the first sentence in the last paragraph of the “Description” subsection FROM:

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

TO:
All the PCI read transactions generated by this function are guaranteed to be completed
before this function returns.

12-80.1 Delete the status code EFI_INVALID_PARAMETER from the “Status
Codes Returned” table (page 12-80)

In section 12.4, “EFI PCI I/O Protocol – Unmap(),” delete the status code
EFI_INVALID_PARAMETER from the “Status Codes Returned” table.

EFI 1.10 Specification Update

48 November 2003 Version -001

Chapter 14: Protocols – USB Support

14-20.1 Change the fourth item in the numbered list in the “Description”
subsection (page 14-20)

In section 14.1.1, “USB Host Controller Protocol – SyncInterruptTransfer(),” change the fourth
item in the numbered list in the “Description” subsection FROM:

4. MaximumPacketLength is not valid. The legal value of this parameter is for the full-
speed device, it should be 8, 16, 32, or 64; for the slow device, it is limited to 8.

TO:
4. MaximumPacketLength is not valid. The legal value of this parameter should be 64

or less for a full-speed device; for a slow device, it is limited to 8 or less.

Chapter 15: Protocols – Network Support

15-13.1 Change the “Status Codes Returned” table (page 15-13)
In section 15.1, “EFI_SIMPLE_NETWORK Protocol – StationAddress(),” change the “Status
Codes Returned” table FROM:

EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

TO:

EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_INVALID_PARAMETER The New station address was not accepted by the NIC.

EFI_INVALID_PARAMETER Reset is FALSE and New is NULL.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_DEVICE_ERROR An error occurred attempting to set the new station address.

EFI_UNSUPPORTED The NIC does not support changing the network interface’s station
address.

 Specification Clarifications and Corrections

Version -001 November 2003 49

15-16.1 Change the “Status Codes Returned” table (page 15-16)
In section 15.1, “EFI_SIMPLE_NETWORK Protocol – Statistics(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The statistics were collected from the network interface.

EFI_NOT_STARTED The network interface has not been started.

EFI_BUFFER_TOO_SMALL The Statistics buffer was too small. The current buffer size
needed to hold the statistics is returned in StatisticsSize.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

TO:

EFI_SUCCESS The requested operation succeeded.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is
NULL. The current buffer size that is needed to hold all the
statistics is returned in StatisticsSize.

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is
not NULL. The current buffer size that is needed to hold all the
statistics is returned in StatisticsSize. A partial set of
statistics is returned in StatisticsTable.

EFI_INVALID_PARAMETER StatisticsSize is NULL and StatisticsTable is not
NULL.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_DEVICE_ERROR An error was encountered collecting statistics from the NIC.

EFI_UNSUPPORTED The NIC does not support collecting statistics from the network
interface.

15-17.1 Change the “Status Codes Returned” table (page 15-17)
In section 15.1, “EFI_SIMPLE_NETWORK Protocol – MCastIpToMac(),” change the “Status
Codes Returned” table FROM:

EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC
address.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

TO:

EFI 1.10 Specification Update

50 November 2003 Version -001

EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC
address.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_INVALID_PARAMETER IP is NULL.

EFI_INVALID_PARAMETER MAC is NULL.

EFI_INVALID_PARAMETER IP does not point to a valid IPv4 or IPv6 multicast address.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_UNSUPPORTED IPv6 is TRUE and the implementation does not support IPv6
multicast to MAC address conversion.

15-50.1 Change the BufferSize parameter in the “Prototype” subsection
from UINTN to UINT64 (page 15-50)

In section 15.3, “PXE Base Code Protocol – Mtftp(),” change the BufferSize parameter in the
“Prototype” subsection from UINTN to UINT64, so it changes FROM:
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (
 IN EFI_PXE_BASE_CODE *This,
 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
 IN OUT VOID *BufferPtr, OPTIONAL
 IN BOOLEAN Overwrite,
 IN OUT UINTN *BufferSize,
 IN UINTN *BlockSize, OPTIONAL
 IN EFI_IP_ADDRESS *ServerIp,
 IN CHAR8 *Filename, OPTIONAL
 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
 IN BOOLEAN DontUseBuffer
);

TO:
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (
 IN EFI_PXE_BASE_CODE *This,
 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
 IN OUT VOID *BufferPtr, OPTIONAL
 IN BOOLEAN Overwrite,
 IN OUT UINT64 *BufferSize,
 IN UINTN *BlockSize, OPTIONAL
 IN EFI_IP_ADDRESS *ServerIp,
 IN CHAR8 *Filename, OPTIONAL
 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
 IN BOOLEAN DontUseBuffer
);

 Specification Clarifications and Corrections

Version -001 November 2003 51

Chapter 17: Protocols – Compression Algorithm Specification

17-18.1 Change the “Status Codes Returned” table (page 17-18)
In section 17.5, “EFI_DECOMPRESS_PROTOCOL – GetInfo(),” change the “Status Codes
Returned” table FROM:

EFI_SUCCESS The size of the uncompressed data was returned in
DestinationSize and the size of the scratch buffer was
returned in ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer
cannot be determined from the compressed data specified by
Source and SourceData.

TO:

EFI_SUCCESS The size of the uncompressed data was returned in
DestinationSize and the size of the scratch buffer was
returned in ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer
cannot be determined from the compressed data specified by
Source and SourceSize.

Chapter 18: Protocols – Device I/O Protocol

18-3.1 Change the definition of EFI_IO_WIDTH in the “Related Definitions”
subsection (page 18-3)

In section 18.2, “DEVICE_IO Protocol,” change the definition of EFI_IO_WIDTH in the “Related
Definitions” subsection FROM:
typedef enum {
 IO_UINT8 = 0,
 IO_UINT16 = 1,
 IO_UINT32 = 2,
 IO_UINT64 = 3
} EFI_IO_WIDTH;

TO:

EFI 1.10 Specification Update

52 November 2003 Version -001

typedef enum {
 IO_UINT8 = 0,
 IO_UINT16 = 1,
 IO_UINT32 = 2,
 IO_UINT64 = 3,
 MMIO_COPY_UINT8 = 4,
 MMIO_COPY_UINT16 = 5,
 MMIO_COPY_UINT32 = 6,
 MMIO_COPY_UINT64 = 7
} EFI_IO_WIDTH;

18-5.1 Change the description of Buffer in the “Parameters” subsection
(page 18-5)

In section 18.2, “DEVICE_IO Protocol – Mem(), .Io(), and .Pci(),” change the description of
Buffer in the “Parameters” subsection FROM:

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

TO:
Buffer For read operations, the destination buffer to store the results.

For write operations, the source buffer to write data from. If
Width is MMIO_COPY_UINT8, MMIO_COPY_UINT16,
MMIO_COPY_UINT32, or MMIO_COPY_UINT64, then
Buffer is interpreted as a base address of an I/O operation such
as Address.

Chapter 19: EFI Byte Code Virtual Machine

19-61.1 Replace “PE32+” with “PE32” (page 19-61)
In section 19.9.5, “Binary Format,” replace “PE32+” with “PE32” in the first sentence.

19-62.1 Replace “PE32+” with “PE32” (page 19-62)
In section 19.10.1, “EBC Image Requirements,” replace “PE32+” with “PE32” in the first sentence.

19-65.1 Replace “PE32+” with “PE32” (page 19-65)
In section 19.11, “EBC Interpreter Protocol – CreateThunk(),” replace “PE32+” with “PE32” in the
first sentence of the “Description” subsection.

19-68.1 Replace “PE32+” with “PE32” (page 19-68)
In section 19.11, “EBC Interpreter Protocol – RegisterIcacheFlush(),” replace “PE32+” with
“PE32” in the first sentence of the “Description” subsection.

 Specification Clarifications and Corrections

Version -001 November 2003 53

19-74.1 Replace “PE32+” with “PE32” (page 19-74)
In section 19.12.11, “EBC Linker,” replace “PE32+” with “PE32” in the second normal text (non-
code) paragraph, so it changes FROM:

In addition, the linker must support EBC images with of the following subsystem types as set
in a PE32+ optional header:

TO:
In addition, the linker must support EBC images with of the following subsystem types as set
in a PE32 optional header:

Appendix B: Console

B-3.1 Change the PC ANSI code value for Set Mode 80x25 in Table B-2
(page B-3)

In section B.2, “SIMPLE_TEXT_OUTPUT,” change the PC ANSI code value for Set Mode 80x25
in Table B-2 (second-to-last row in the table) FROM:

ESC [3 h CSI = 3 h Set Mode 80x25 color.

TO:

ESC [= 3 h CSI = 3 h Set Mode 80x25 color.

Appendix E: 32/64-Bit UNDI Specification

E-3.1 Update four RFC numbers in Table E-2 (page E-3)
In section E.1.2, “Referenced Specifications,” change the Request for Comments (RFC) numbers
and URLs for the following rows in Table E-2 FROM (unchanged rows are omitted for brevity):

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc1700.txt

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt. - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP.
Required reading for those implementing the BC protocol or PXE Bootservers..

DHCP Dynamic Host Configuration Protocol
DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt)

Required reading for those implementing the BC protocol or PXE Bootservers.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt
Required reading for those implementing the BC protocol.

TO:

http://www.ietf.org/rfc/rfc1700.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://www.ietf.org/rfc/rfc2236.txt

EFI 1.10 Specification Update

54 November 2003 Version -001

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc3232.txt

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt, http://www.ietf.org/rfc/rfc1542.txt, and
http://www.ietf.org/rfc/rfc1534.txt. - These references are included for backward compatibility.
BC protocol supports DHCP and BOOTP.
Required reading for those implementing the BC protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol
DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt, http://www.ietf.org/rfc/rfc3203.txt,
http://www.ietf.org/rfc/rfc3396.txt, http://www.ietf.org/rfc/rfc1534.txt)

Required reading for those implementing the BC protocol or PXE Bootservers.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc3376.txt.
Required reading for those implementing the BC protocol.

E-3.2 Change “BC protocol” to “PXE Base Code Protocol” in Table E-2
(page E-3)

In section E.1.2, “Referenced Specifications,” change “BC protocol” to “PXE Base Code Protocol”
in the following rows in Table E-2 FROM (unchanged rows are omitted for brevity):

ARP Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Required reading for
those implementing the BC protocol.

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt. - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP.
Required reading for those implementing the BC protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol
DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt)

Required reading for those implementing the BC protocol or PXE Bootservers.

ICMP Internet Control Message Protocol
ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt
ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt
Required reading for those implementing the BC protocol.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt
Required reading for those implementing the BC protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt
Ipv6: http://www.ietf.org/rfc/rfc2460.txt and http://www.ipv6.org
Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.
Required reading for those implementing the BC protocol.

TO (includes changes listed in Specification Clarification E-3.1 above):

http://www.ietf.org/rfc/rfc3232.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc1542.txt
http://www.ietf.org/rfc/rfc1534.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://www.ietf.org/rfc/rfc3203.txt
http://www.ietf.org/rfc/rfc3396.txt
http://www.ietf.org/rfc/rfc1534.txt
http://www.ietf.org/rfc/rfc3376.txt
http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org/

 Specification Clarifications and Corrections

Version -001 November 2003 55

ARP Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Required reading for
those implementing the PXE Base Code Protocol.

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt, http://www.ietf.org/rfc/rfc1542.txt, and
http://www.ietf.org/rfc/rfc1534.txt. - These references are included for backward compatibility.
BC protocol supports DHCP and BOOTP.
Required reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol
DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt, http://www.ietf.org/rfc/rfc3203.txt,
http://www.ietf.org/rfc/rfc3396.txt, http://www.ietf.org/rfc/rfc1534.txt)

Required reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

ICMP Internet Control Message Protocol
ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt
ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt
Required reading for those implementing the BC protocol.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc3376.txt.
Required reading for those implementing the PXE Base Code Protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt
Ipv6: http://www.ietf.org/rfc/rfc2460.txt and http://www.ipv6.org
Required reading for those implementing the PXE Base Code Protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.
Required reading for those implementing the PXE Base Code Protocol.

E-4.1 Change “BC protocol” to “PXE Base Code Protocol” in Table E-2
(page E-4)

In section E.1.2, “Referenced Specifications,” change “BC protocol” to “PXE Base Code Protocol”
in the following rows in Table E-2 FROM (unchanged rows are omitted for brevity):

TCP Transmission Control Protocol
TCPv4: http://www.ietf.org/rfc/rfc0793.txt
TCPv6: ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
Required reading for those implementing the BC protocol.

TFTP Trivial File Transfer Protocol
TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options: http://www.ietf.org/rfc/rfc2347.txt,
http://www.ietf.org/rfc/rfc2348.txt, and http://www.ietf.org/rfc/rfc2349.txt).
Required reading for those implementing the BC protocol.

UDP User Datagram Protocol
UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt
UDP over IPv6: http://www.ietf.org/rfc/rfc2454.txt
Required reading for those implementing the BC protocol.

WfM Wired for Management
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

Recommended reading for those implementing the BC protocol or PXE Bootservers.

TO:

http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc1542.txt
http://www.ietf.org/rfc/rfc1534.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://www.ietf.org/rfc/rfc3203.txt
http://www.ietf.org/rfc/rfc3396.txt
http://www.ietf.org/rfc/rfc1534.txt
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/rfc/rfc3376.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org/
http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

EFI 1.10 Specification Update

56 November 2003 Version -001

TCP Transmission Control Protocol

TCPv4: http://www.ietf.org/rfc/rfc0793.txt
TCPv6: ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
Required reading for those implementing the PXE Base Code Protocol.

TFTP Trivial File Transfer Protocol
TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options: http://www.ietf.org/rfc/rfc2347.txt,
http://www.ietf.org/rfc/rfc2348.txt, and http://www.ietf.org/rfc/rfc2349.txt).
Required reading for those implementing the PXE Base Code Protocol.

UDP User Datagram Protocol
UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt
UDP over IPv6: http://www.ietf.org/rfc/rfc2454.txt
Required reading for those implementing the PXE Base Code Protocol.

WfM Wired for Management
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

Recommended reading for those implementing the PXE Base Code Protocol or PXE
Bootservers.

E-32.1 Replace “RFC 1700” with “RFC 3232” (page E-32)
In section E.3.4.12, “PXE_IFTYPE,” update the RFC number in the C code snippet FROM:
// This information is from the ARP section of RFC 1700.

TO:
// This information is from the ARP section of RFC 3232.

E-38.1 Change the direction of the Shutdown and Stop state transition
arrows in Figure E-6 (page E-38)

In section E.4, “UNDI Commands,” change the direction of the Shutdown and Stop state transition
arrows in Figure E-6, so that it shows the following:

Shutdown changes the state from Initialized to Started.
Stop changes the state from Started to Stopped.

E-41.1 Replace the last two paragraphs in section E.4.2 (page E-41)
In section E.4.2, “Get State,” change the last two paragraphs in this section FROM:

Drivers, NBPs, and applications should not use UNDIs that are already started or initialized.
No other operational checks are made by this command. If this is a S/W UNDI, the
PXE_START_CPB.Delay() and PXE_START_CPB.Virt2Phys() callbacks will
not be used.

TO:
Drivers and applications must not start using UNDIs that have been placed into the Started or
Initialized states by another driver or application.
3.0 and 3.1 S/W UNDI: No callbacks are performed by this UNDI command.

http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

 Specification Clarifications and Corrections

Version -001 November 2003 57

E-44.1 Replace the “Preparing the CPB” subsection in its entirety
(page E-44)

In section E.4.3.1, “Issuing the Command,” replace the “Preparing the CPB” subsection in its
entirety with the following:

Preparing the CPB
For the 3.1 S/W UNDI Start command, the CPB structure shown below must be filled in and
the CDB must be set to sizeof(struct s_pxe_cpb_start_31).

#pragma pack(1)
typedef struct s_pxe_cpb_start_31 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 UniqueId,
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds
 // and will always request delays in increments of 10
 // microseconds. The Delay() callback routine must delay
 // between n and n + 10 microseconds before returning control
 // to the UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT64 UniqueId,
 // IN UINT32 Enable);
 //
 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.
 // When UNDI no longer needs the block, it will call Block()
 // with Enable set to zero.
 //

 UINT64 Virt2Phys;

EFI 1.10 Specification Update

58 November 2003 Version -001

 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical
 // addresses are identical.
 //
 // VOID
 // Virt2Phys(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage
 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 MemIo;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // MemIo(
 // IN UINT64 UniqueId,
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the MemIo() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this
 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //

 UINT64 MapMem;
 //
 // Map virtual memory address for DMA.
 // This field can be set to zero if there is no mapping
 // service.
 //
 // VOID
 // MapMem(

 Specification Clarifications and Corrections

Version -001 November 2003 59

 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // OUT UINT64 PhysicalPtr);
 //
 // When UNDI needs to perform a DMA transfer it will request a
 // virtual-to-physical mapping using the MapMem() service. The
 // Virtual parameter contains the virtual address to be mapped.
 // The minimum Size of the virtual memory buffer to be mapped.
 // Direction is one of the TO_DEVICE, FROM_DEVICE or
 // TO_AND_FROM_DEVICE constants defined at the end of this
 // section.PhysicalPtr contains the mapped physical address or
 // a copy of the Virtual address if no mapping is required.
 //

 UINT64 UnMapMem;
 //
 // Un-map previously mapped virtual memory address.
 // This field can be set to zero only if the MapMem() service
 // is also set to zero.
 //
 // VOID
 // UnMapMem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When UNDI is done with the mapped memory, it will use the
 // UnMapMem() service to release the mapped memory.
 //

 UINT64 SyncMem;
 //
 // Synchronise mapped memory.
 // This field can be set to zero only if the MapMem() service
 // is also set to zero.
 //
 // VOID
 // SyncMem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When the virtual and physical buffers need to be

EFI 1.10 Specification Update

60 November 2003 Version -001

 // synchronized, UNDI will call the SyncMem() service.
 //

 UINT64 UniqueId;
 //
 // UNDI will pass this value to each of the callback services.
 // A unique ID number should be generated for each instance of
 // the UNDI driver that will be using these callback services.
 //
} PXE_CPB_START_31;
#pragma pack()

For the 3.0 S/W UNDI Start command, the CPB structure shown below must be filled in
and the CDB must be set to sizeof(struct s_pxe_cpb_start_30).

#pragma pack(1)
typedef struct s_pxe_cpb_start_30 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds
 // and will always request delays in increments of 10.
 // microseconds The Delay() callback routine must delay between
 // n and n + 10 microseconds before returning control to the
 // UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT32 Enable);
 //
 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.
 // When UNDI no longer needs the block, it will call Block()

 Specification Clarifications and Corrections

Version -001 November 2003 61

 // with Enable set to zero.
 //

 UINT64 Virt2Phys;
 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical
 // addresses are identical.
 //
 // VOID
 // Virt2Phys(
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage
 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 MemIo;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // MemIo(
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the MemIo() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this
 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //
} PXE_CPB_START_30;
#pragma pack()

EFI 1.10 Specification Update

62 November 2003 Version -001

E-52.1 Change three #define statements (page E-52)
In section E.4.5.3, “Checking Command Execution Results,” change the following three #define
statements in the “DB” subsection FROM:

#define PXE_DUPLEX_AUTO_DETECT_SUPPORTED 1
define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2
#define PXE_DUPLEX_FORCE_HALF_SUPPORTED 4

TO:
#define PXE_DUPLEX_DEFAULT 0
#define PXE_DUPLEX_ENABLE_FULL_SUPPORTED 1
#define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2

Glossary

Gloss-4.1 Replace “PE32+” with “PE32” in the EBC Image definition
(page Glossary-4)

In the EBC Image definition in the “Glossary” section, replace “PE32+” with “PE32.”

Version -001 November 2003 63

Documentation Changes

Chapter 3: Boot Manager

3-5.1 Delete the hyphen in the heading text of section 3.2 (page 3-5)
Delete the hyphen in the heading of section 3.2, “Globally-Defined Variables.”

Chapter 9: Protocols – EFI Driver Model

9-42.1 Change “attempt” to “attempting” in the EFI_DEVICE_ERROR
status code description (page 9-42)

In section 9.4, “EFI Driver Configuration Protocol – ForceDefaults(),” change “attempt” to
“attempting” in the description of EFI_DEVICE_ERROR in the “Status Codes Returned” table, so
it changes FROM:

EFI_DEVICE_ERROR A device error occurred while attempt to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

TO:

EFI_DEVICE_ERROR A device error occurred while attempting to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

Chapter 12: Protocols – PCI Bus Support

12-96.1 Change “being in” to “begin on” in the tenth bullet (page 12-96)
In section 12.4.2, “PCI Options ROMs,” change “being in” to “begin on” in the tenth bullet, so it
changes FROM:

• The PCIR data structure must being in a 4-byte boundary.
TO:

• The PCIR data structure must begin on a 4-byte boundary.

12-96.2 Change “is” to “in” in the first sentence of the twelfth bullet
(page 12-96)

In section 12.4.2, “PCI Options ROMs,” change “is” to “in” in the first sentence of the twelfth
bullet, so it changes FROM:

• The images are placed in the PCI Option ROM is order from highest to lowest priority.
TO:

• The images are placed in the PCI Option ROM in order from highest to lowest priority.

	EFI 1.10 Specification Update
	Disclaimer
	Revision History
	Preface
	Nomenclature

	Contents
	General Information
	Summary Table of Changes

	Specification Changes
	Appendix E: 32/64-Bit UNDI Specification
	E-1.1 Delete the note in section E.1
	E-8.1 Change the Minor field definition in Table E-4

	Errata
	Specification Clarifications and Corrections
	Chapter 2: Overview
	2-10.1 Change the last bullet in section 2.3.2

	Chapter 3: Boot Manager
	3-6.1 Change the second paragraph in section 3.2
	3-6.2 Change the fourth paragraph in section 3.2

	Chapter 4: EFI System Table
	4-8.1 Change the IninstallMultipleProtocolInterfaces field in "Related Definitions"

	Chapter 5: Boot Services
	5-4.1 Add lines to the TPL restrictions in Table 5-3
	5-6.1 Change the description of EVT_NOTIFY_WAIT
	5-6.2 Change the description of EVT_NOTIFY_SIGNAL
	5-6.3 Change the description of EVT_SIGNAL_EXIT_BOOT_SERVICES
	5-6.4 Change the description of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
	5-8.1 Change the last paragraph of the “Description” subsection
	5-8.2 Change the “Status Codes Returned” table
	5-10.1 Change the “Description” subsection
	5-11.1 Change the “Description” subsection in its entirety
	5-11.2 Change the EFI_INVALID_PARAMETER entry in the “Status Codes Returned" table
	5-12.1 Change the third bullet in the “Description” subsection
	5-13.1 Change the description of TriggerTime in the “Parameters" subsection
	5-28.1 Change the “Status Codes Returned” table
	5-36.1 Change the “Summary” paragraph
	5-37.1 Change the “Status Codes Returned” table
	5-38.1 Change the “Summary” paragraph
	5-39.1 Change the “Status Codes Returned” table
	5-41.1 Change the “Status Codes Returned” table
	5-42.1 Change the “Status Codes Returned” table
	5-44.1 Change the “Status Codes Returned” table
	5-46.1 Change the “Status Codes Returned” table
	5-48.1 Change the “Status Codes Returned” table
	5-61.1 Change the description of DriverImageHandle in the “Parameters" subsection
	5-62.1 Change the description of Context Override in “Description"
	5-67.1 Add an entry to the “Status Codes Returned” table
	5-79.1 Change the “Status Codes Returned” table
	5-83.1 Change the “Summary” paragraph
	5-83.2 Delete the second sentence in the first paragraph of the "Description" subsection
	5-84.1 Change the “Status Codes Returned” table
	5-85.1 Change the first paragraph of the “Description” subsection
	5-91.1 Change the “Status Codes Returned” table

	Chapter 6: Runtime Services
	6-5.1 Change the third paragraph in the “Description” subsection
	6-17.1 Change the first paragraph in the “Description” subsection
	6-19.1 Change the “Status Codes Returned” table

	Chapter 8: Protocols – Device Path Protocol
	8-11.1 Change the description of the Length field in Table 8-14

	Chapter 9: Protocols – EFI Driver Model
	9-19.1 Delete the last sentence from the first paragraph in the "Description" subsection
	9-37.1 Change the “Status Codes Returned” table
	9-39.1 Change the “Status Codes Returned” table
	9-42.1 Change the “Status Codes Returned” table
	9-46.1 Change the “Status Codes Returned” table
	9-51.1 Change the “Status Codes Returned” table

	Chapter 10: Protocols – Console Support
	10-17.1 Change the second paragraph of the “Description” subsection
	10.19-1 Change the description of Attribute in the “Parameters" subsection
	10-20.1 Delete EFI_UNSUPPORTED from the “Status Codes Returned" table
	10-28.1 Change the “Status Codes Returned” table
	10-33.1 Change the EfiUgaVideoFill entry in Table 10-4

	Chapter 11: Protocols – Bootable Image Support
	11-3.1 Change the EFI_NO_SUCH_MEDIA return code
	11-9.1 Change the description of the Revision field in Table 11-1
	11-26.1 Change the “Status Codes Returned” table
	11-27.1 Change the “Status Codes Returned” table
	11-28.1 Change the “Status Codes Returned” table
	11-29.1 Change the “Status Codes Returned” table
	11-31.1 Change the “Description” subsection in its entirety
	11-31.2 Change the “Status Codes Returned” table
	11-58.1 Change the description of the StrToFat() API

	Chapter 12: Protocols – PCI Bus Support
	12-11.1 Add three attributes and descriptions to the list of PCI Root Bridge I/O Protocol Attribute bits
	12-12.1 Change the descriptions of the IDE attributes in "Related Definitions"
	12-60.1 Add three attributes and descriptions to the list of PCI I/O Protocol Attribute bits
	12-61.1 Change the descriptions of EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO and EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO
	12-70.1 Change the first sentence in the last paragraph of the "Description" subsection
	12-80.1 Delete the status code EFI_INVALID_PARAMETER from the "Status Codes Returned" table

	Chapter 14: Protocols – USB Support
	14-20.1 Change the fourth item in the numbered list in the “Description" subsection

	Chapter 15: Protocols – Network Support
	15-13.1 Change the “Status Codes Returned” table
	15-16.1 Change the “Status Codes Returned” table
	15-17.1 Change the “Status Codes Returned” table
	15-50.1 Change the BufferSize parameter in the “Prototype” subsection from UINTN to UINT64

	Chapter 17: Protocols – Compression Algorithm Specification
	17-18.1 Change the “Status Codes Returned” table

	Chapter 18: Protocols – Device I/O Protocol
	18-3.1 Change the definition of EFI_IO_WIDTH in “Related Definitions"
	18-5.1 Change the description of Buffer in the “Parameters” subsection

	Chapter 19: EFI Byte Code Virtual Machine
	19-61.1 Replace “PE32+” with “PE32”
	19-62.1 Replace “PE32+” with “PE32”
	19-65.1 Replace “PE32+” with “PE32”
	19-68.1 Replace “PE32+” with “PE32”
	19-74.1 Replace “PE32+” with “PE32”

	Appendix B: Console
	B-3.1 Change the PC ANSI code value for Set Mode 80x25 in Table B-2

	Appendix E: 32/64-Bit UNDI Specification
	E-3.1 Update four RFC numbers in Table E-2
	E-3.2 Change “BC protocol” to “PXE Base Code Protocol” in Table E-2
	E-4.1 Change “BC protocol” to “PXE Base Code Protocol” in Table E-2
	E-32.1 Replace “RFC 1700” with “RFC 3232”
	E-38.1 Change the direction of the Shutdown and Stop state transition arrows
	E-41.1 Replace the last two paragraphs in section E.4.2
	E-44.1 Replace the “Preparing the CPB” subsection in its entirety
	E-52.1 Change three #define statements

	Glossary
	Gloss-4.1 Replace “PE32+” with “PE32” in the EBC Image definition

	Documentation Changes
	Chapter 3: Boot Manager
	3-5.1 Delete the hyphen in the heading text of section 3.2

	Chapter 9: Protocols – EFI Driver Model
	9-42.1 Change “attempt” to “attempting” in the EFI_DEVICE_ERROR status code description

	Chapter 12: Protocols – PCI Bus Support
	12-96.1 Change “being in” to “begin on” in the tenth bullet
	12-96.2 Change “is” to “in” in the first sentence of the twelfth bullet

