
7Creating Qsys Components

2013.11.4

QII51022 Subscribe Send Feedback

In order to describe and package IP components for use in a Qsys system, you must create a Hardware
Component Definition File (_hw.tcl) which will describes your component, its interfaces and HDL files.
Qsys provides the Component Editor to help you create a simple _hw.tcl file.

The Demo AXI Memory example on the Qsys Design Examples page of the Altera® web site provides the
full code examples that appear in the following topics.

Qsys supports standard Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), and AMBA
APB™ 3 (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Demo AXI Memory Example

Qsys Components
A Qsys component includes the following elements:

• Information about the component type, such as name, version, and author.
• HDL description of the component’s hardware, including SystemVerilog, Verilog HDL, or VHDL files
• Constraint files (Synopsys Design Constraints File (.sdc) and/or Quartus II IP File (.qip)) that define the

component for synthesis and simulation.
• A component’s interfaces, including I/O signals.
• The parameters that configure the operation of the component.

Component Interface Support
Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51022
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51022%202013.11.4)%20Creating%20Qsys%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys components can include the following types of interfaces:

• Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

• Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that streamunidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

• Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

• Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

• Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

• Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Component Structure
Altera provides components automatically installed with the Quartus® II software. You can obtain a list of
Qsys-compliant components provided by third-party IP developers on Altera's Intellectual Property &
ReferenceDesigns page by typing: qsys certified in the Search box, and then selecting IPCore&Reference
Designs. Components are also provided with Altera development kits, which are listed on the All
Development Kits page.

Every component is defined with a < component_name >_hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. When you design your own custom component, you can
create the _hw.tcl file manually, or by using the Qsys Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a file that you can edit
outside of the Component Editor to add advanced procedures. When you edit a previously saved _hw.tcl
file, Qsys automatically backs up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so that other users can use
the component in their systems. The _hw.tcl file contains relative paths to the other files, so if you move an
_hw.tcl file, you should also move all the HDL and other files associated with it.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Component Structure7-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are three component types:

• Static— Static components always generate the same output, regardless of their parameterization.
Components that instantiate static components must have only static children.

• Generated—A generated component's fileset callback allows an instance of the component to create
unique HDL design files based on the instance's parameter values.

• Composed—Composed components are subsystems constructed from instances of other components.
You can use a composition callback to manage the subsystem in a composed component.

Related Information

• Intellectual Property & Reference Designs

• Creating a Composed Component or Subsystem on page 7-28

• Adding Component Instances to a Static or Generated Component on page 7-32

Component File Organization
A typical component uses the following directory structure where the names of the directories are not
significant:

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd files that contain the
top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.
• <component_name> _sw.tcl—The software driver configuration file. This file specifies the paths for the

.c and .h files associated with the component, when required.
• <software>/—Contains software drivers or libraries related to the component.

Refer to the Nios II Software Developer’s Handbook for information about writing a device driver or
software package suitable for use with the Nios II processor.

Note:

Related Information

• Hardware Abstraction LayerTool Reference (Nios II Software Developer’s Handbook)

• Nios II Software Build Tool Reference (Nios II Software Developer’s Handbook)

Component Versions
Qsys systems support multiple versions of the same component within the same system; you can create and
maintain multiple versions of the same component.

If you have multiple _hw.tcl files for components with the same NAME module properties and different
VERSION module properties, both versions of the component are available.

If multiple versions of the component are available in the Qsys Library, you can add a specific version of a
component by right-clicking the component, and then selecting Add version <version_number>.

Upgrading IP Components to the Latest Version
When you open a Qsys design, if Qsys detects IP components that require regeneration, the Upgrade IP
Cores dialog box appears and allows you to upgrade outdated components.

Altera CorporationCreating Qsys Components

Send Feedback

7-3Component File Organization
QII51022
2013.11.4

http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Components that you must upgrade in order to successfully compile your design appear in red. Status icons
indicate whether a component is currently being regenerated, the component is encrypted, or that there is
not enough information to determine the status of component. To upgrade a component, in the Upgrade
IP Cores dialog box, select the component that you want to upgrade, and then click Upgrade. The Quartus
II software maintains a list of all IP components associated with your design on the Components tab in the
Project Navigator.

Related Information
Upgrade IP Components Dialog Box

Life Cycle of a Component
When you define a component with the Qsys Component Editor, or a custom _hw.tcl file, you specify the
information that Qsys requires to instantiate the component in aQsys system and to generate the appropriate
output files for synthesis and simulation.

The following phases describe the process when working with components in Qsys:

• Discovery—During the discovery phase, Qsys reads the _hw.tcl file to identify information that appears
in the Qsys Library, such as the component's name, version, and documentation URLs. Each time you
open Qsys, the tool searches for the following file types using the default search locations and entries in
the IP Search Path:

• _hw.tcl files—Each _hw.tcl file defines a single component.
• IP Index (.ipx) files—Each .ipx file indexes a collection of available components, or a reference to

other directories to search.

• Static Component Definition—During the static component definition phase, Qsys reads the _hw.tcl
file to identify static parameter declarations, interface properties, interface signals, and HDL files that
define the component. At this stage of the life cycle, the component interfaces might be only partially
defined.

• Parameterization—During the parameterization phase, after an instance of the component is added to
a Qsys system, the user of the component specifies parameters with the component’s parameter editor.

• Validation—During the validation phase, Qsys validates the values of each instance's parameters against
the allowed ranges specified for each parameter. You can use callback procedures that run during the
validation phase to provide validationmessages. For example, if there are dependencies between parameters
where only certain combinations of values are supported, you can report errors for the unsupported
values.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Life Cycle of a Component7-4 2013.11.4

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_com_upgrade_ip.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Elaboration—During the elaboration phase, Qsys queries the component for its interface information.
Elaboration is triggered when an instance of a component is added to a system, when its parameters are
changed, or when a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based on the values of
parameters. For example, interfaces defined with static declarations can be enabled or disabled during
elaboration.When elaboration is complete, the component's interfaces and design logicmust be completely
defined.

• Composition—During the composition phase, a component can manipulate the instances in the
component's subsystem. The _hw.tcl file uses a callback procedure to provide parameterization and
connectivity of subcomponents.

• Generation—During the generation phase,Qsys generates synthesis or simulation files for each component
in the system into the appropriate output directories, as well as any additional files that support associated
tools.

Creating Qsys Components in the Component Editor
TheQsys Component Editor, accessed by clickingNewComponent in theQsys Library, allows you to create
and package a component for use in Qsys. When you use the Component Editor to define a component, the
Component Editor writes the information to the _hw.tcl file.

The Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.
• Specify the SystemVerilog, Verilog HDL, or VHDL files, and constraint files that define the component

for synthesis and simulation.
• Create an HDL template for a component by first defining its parameters, signals, and interfaces.
• Associate and define signals for a component’s interfaces.
• Set parameters on interfaces, which specify characteristics.
• Specify relationships between interfaces.
• Declare parameters that alter the component structure or functionality.

If the component is HDL-based, you must define the parameters and signals in the HDL file, and cannot
add or remove them in the Component Editor. If you have not yet created the top-level HDL file, you declare
the parameters and signals in the Component Editor, and they are then included in the HDL template file
that Qsys creates.

In a Qsys system, the interfaces of a component are connected within the system, or exported as top-level
signals from the system.

If you are creating the component using an existing HDL file, the order in which the tabs appear in the
Component Editor reflects the recommended design flow for component development. You can use the
Prev and Next buttons at the bottom of the Component Editor window to guide you through the tabs.

If the component is not based on an existing HDL file, enter the parameters, signals, and interfaces first, and
then return to the Files tab to create the top-level HDL file template. When you click Finish, Qsys creates
the component _hw.tcl file with the details provided on the Component Editor tabs.

After the component is saved, it is available in the Qsys Library.

If you require features in the component that are not supported by the Component Editor, such as callback
procedures, you can use the Component Editor to create the _hw.tcl file, and then manually edit the file to

Altera CorporationCreating Qsys Components

Send Feedback

7-5Creating Qsys Components in the Component Editor
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

complete the component definition. Subsequent topics document the _hw.tcl commands that are generated
by the Component Editor, as well as some of the advanced features that you can add with your own _hw.tcl
commands.

Related Information
Component Interface Tcl Reference

Saving a Component and Creating an _hw.tcl File
You save a component by clicking Finish in the Component Editor. The Component Editor saves the
component to a file with the file name <component_name> _hw.tcl.

Altera recommends that you save _hw.tcl files and their associated files in an ip/ <class-name> directory
within your Quartus II project directory. You can also publish component information for use by software,
such as a C compiler and a board support package (BSP) generator.

Refer to Creating a System with Qsys for information on how to search for and add components to the Qsys
library for use in your designs.

Related Information
Publishing Component Information to Embedded Software (Nios II Software Developer’s Handbook)

Creating a System with Qsys

Editing a Component with the Component Editor
InQsys, youmake changes to a component by right-clicking the component in the Library, and then clicking
Edit. After making changes, click Finish to save the changes to the _hw.tcl file. You can open the _hw.tcl
file in a text editor to view the hardware Tcl for the component. If you edit the _hw.tcl file to customize the
component with advanced features, you cannot use the Component Editor to make further changes without
over-writing your customized file.

You cannot use the Component Editor to edit components installed with the Quartus II software, such as
Altera-provided components. If you edit the HDL for a component and change the interface to the top-level
module, you must edit the component to reflect the changes you made to the HDL.

Related Information
Creating Qsys Components (Quartus II Help)

Specifying Basic Component Information
The Component Type tab in the Component Editor allows you to specify the following information about
the component:

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Saving a Component and Creating an _hw.tcl File7-6 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_creating_components.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-level module name when
you create a synthesis wrapper file for a non HDL-based component.

• Displayname—Identifies the component in the parameter editor, which you use to configure and instance
of the component, and also appears in the Library under Project and on the System Contents tab.

• Version—Specifies the version number of the component.
• Group—Represents the category of the component in the list of available components in the Library.

You can select an existing group from the list, or define a new group by typing a name in the Group box.
Separating entries in theGroup boxwith a slash defines a subcategory. For example, if you typeMemories
and Memory Controllers/On-Chip, the component appears in the Library under the On-Chip group,
which is a subcategory of the Memories and Memory Controllers group. If you save the component in
the project directory, the component appears in the Library in the group you specified under Project.
Alternatively, if you save the component in the Quartus II installation directory, the component appears
in the specified group under Library.

• Description—Allows you to describe the component. This description appears when the user views the
component details.

• Created By—Allows you to specify the author of the component.
• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png format) that represents the

component and appears as the header in the parameter editor for the component. The default image is
the Altera MegaCore function icon.

• Documentation—Allows you to add links to documentation for the component, and appears when you
right-click the component in the Library, and then select Details.

• To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

• To specify a file in the file system, begin your path with file:/// for Linux, and file://// for Windows;
for example (Windows): file:////company_server/datasheets my_memory_controller.pdf.

TheDisplay name,Group,Description,CreatedBy, Icon, andDocumentation entries are optional. Figure
7-1 shows the Component Type tab with the component information.

Altera CorporationCreating Qsys Components

Send Feedback

7-7Specifying Basic Component Information
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-1: Component Type Tab in the Component Editor

When you use the Component Editor to create a component, it writes this basic component information in
the _hw.tcl file. The example below shows the component hardware Tcl code related to the entries for the
ComponentType tab in figure above. Thepackage require command specifies theQuartus II software
version that Qsys uses to create the _hw.tcl file, and ensures compatibility with this version of the Qsys API
in future ACDS releases.

The component defines its basic information with various module properties using the
set_module_property command. For example,set_module_property NAME specifies the name
of the component, while set_module_property VERSION allows you to specify the version of the
component. When you apply a version to the _hw.tcl file, it allows the file to behave exactly the same way
in future releases of the Quartus II software.

Example 7-1: _hw.tcl Created from Entries in the Component Type tab

request TCL package from ACDS 13.1

package require -exact qsys 13.1

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Specifying Basic Component Information7-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Component Interface Tcl Reference

Specifying Files for Synthesis and Simulation
The Files tab in the Component Editor allows you to specify files for synthesis and simulation. If you already
have HDL code that describes the Qsys component that you want to create, you can specify the files on the
Files tab. If you have not yet created the HDL code that describes the component, but you have identified
the signals and parameters that you want in the component, you can use the Files tab to create a top-level
HDL template file. The Component Editor generates the appropriate _hw.tcl commands to specify the files.
You can also write your own hw.tcl file with the same commands, if you are not using the Component Editor.

A component uses filesets to specify the different sets of files that can be generated for an instance of the
component. The supported fileset types are:QUARTUS_SYNTH, for synthesis and compilation in theQuartus
II software, SIM_VERILOG, for Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In a _hw.tcl file, you add a fileset to a component with the add_fileset command. You then list specific
files with the add_fileset_file command, which adds the specified files to the most recently declared
fileset. The add_fileset_property command allows you to add properties such as TOP_LEVEL,
which specifies the top-level HDL module for the component.

You can populate a fileset with a a fixed list of files, add different files based on a parameter value, or even
generate an HDL file with a custom HDL generator function outside of the _hw.tcl file.

Specifying HDL Files for Synthesis
In the Component Editor, you can add HDL files and other support files that should be included when this
component is created to the list of Synthesis Files by clicking +, and then selecting the files in the Open
dialog box.

A component must specify an HDL file as the top-level file, which contains the top-level module. The
Synthesis Files listmight also include supportingHDL files, such as timing constraints, or other files required
to successfully synthesize and compile in the Quartus II software. The synthesis files for a component are
copied to the generation output directory during Qsys system generation.

Figure 7-2 indicates the demo_axi_memory.sv file as the top-level file for the component in the Synthesis
Files section on the Files tab.

Altera CorporationCreating Qsys Components

Send Feedback

7-9Specifying Files for Synthesis and Simulation
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-2: Using HDL Files to Define a Component

Creating a New HDL File for Synthesis
If you do not already have an HDL implementation of the component, you can use the Component Editor
to define the component, and then create a simple top-level synthesis file containing the signals and parameters
for the component. You can then edit this HDL file to add the logic that directs the component's behavior.

To begin, you first specify the information about the component on theParameters, Signals, and Interfaces
tabs. Then, you return to the Files tab to create an HDL file by clicking Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified parameters and signals.

Analyzing Synthesis Files
After the top-level HDL file is specified in the Component Editor, click Analyze Synthesis Files to analyze
the parameters and signals in the top-level, and then select the top-level module from theTop LevelModule
list. If there is a single module or entity in the HDL file, Qsys automatically populates the Top-levelModule
list.

Once analysis is complete and the top-level module is selected, the parameters and signals found in the top-
level module are used as the parameters and signals for the component, and you can view them on the
Parameters and Signals tabs. The Component Editor might report errors or warnings at this stage, because
the signals and interfaces are not yet fully defined.

At this stage in the Component Editor flow, you cannot add or remove parameters or signals created
from a specified HDL file without editing the HDL file itself.

Note:

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type QUARTUS_SYNTH in
the _hw.tcl file created by the Component Editor. The top-level module is used to specify the TOP_LEVEL
fileset property. Each synthesis file is individually added to the fileset. If the source files are saved in a different
directory from the working directory where the Component Editor is launched and the _hw.tcl is located,
you can use standard fixed or relative path notation to identify the file location for the PATH variable.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a New HDL File for Synthesis7-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-2 shows the component hardware Tcl code related to the entries for the Files Type tab in the
Synthesis Files section shown in Figure 7-2.

Example 7-2: _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

Related Information

• Component Interface Tcl Reference

• Specifying HDL Files for Synthesis on page 7-9

Naming HDL Signals for Automatic Interface and Type Recognition
If you create the component's top-level HDL file before using the Component Editor, the Component Editor
recognizes the interface and signal types based on the signal names in the source HDL file. This
auto-recognition feature eliminates the task of manually assigning each interface and signal type in the
Component Editor.

To enable this auto-recognition feature, youmust create signal names using the following naming convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one interface of each type
in the component definition. For interfaces with only one signal, such as clock and reset inputs, the <interface
type prefix> is also optional. When the Component Editor recognizes a valid prefix and signal type for a
signal, it automatically assigns an interface and signal type to the signal based on the naming convention. If
no interface name is specified for a signal, you can choose an interface name on the Interfaces tab in the
Component Editor.

Table 7-1: Interface Type Prefixes for Automatic Signal Recognition

Interface TypeInterface Prefix

Avalon-ST sink (input)asi

Avalon-ST source (output)aso

Avalon-MM masteravm

Avalon-MM slaveavs

AXI masteraxm

Altera CorporationCreating Qsys Components

Send Feedback

7-11Naming HDL Signals for Automatic Interface and Type Recognition
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface TypeInterface Prefix

AXI slaveaxs

APB masterapm

APB slaveaps

Conduitcoe

Clock Sink (input)csi

Clock Source (output)cso

Interrupt receiverinr

Interrupt senderins

Nios II custom instruction masterncm

Nios II custom instruction slavencs

Reset sink (input)rsi

Reset source (output)rso

Avalon-TC mastertcm

Avalon-TC slavetcs

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the signal types available
for each interface type.

Related Information

• Avalon Interface SpecificationsProtocol Specification

• AMBA Protocol Specification

Specifying Files for Simulation
To supportQsys systemgeneration for simulation, a componentmust specify theVHDLorVerilog simulation
files. Simulation files are generatedwhen a user adds the component to aQsys system and chooses to generate
Verilog or VHDL simulation files. In most cases, these files are the same as the synthesis files. If there are
simulation-specific HDL files or simulation models, you can use them in addition to, or in place of the
synthesis files. To use your synthesis files as your simulation files in the Component Editor, on the Files tab,
click Copy From Synthesis Files to copy the list of synthesis files to the Verilog Simulation Files or VHDL
Simulation Files lists.

You specify the simulation files in a similar way as the synthesis files with the fileset commands in a _hw.tcl
file. The code example below shows SIM_VERILOG and SIM_VHDL filesets for Verilog and VHDL
simulation output files. In this example, the same Verilog files are used for both Verilog and VHDL outputs,
and there is one additional System Verilog file added. This method works for designers of Verilog IP to

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Specifying Files for Simulation7-12 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

support users who want to generate a VHDL top-level simulation file when they have a mixed-language
simulation tool and license that can read the Verilog output for the component. Figure 7-3 shows the files
specified for simulation on the Files tab.

Figure 7-3: Specifying the Simulation Output Files

Example 7-3: _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Altera CorporationCreating Qsys Components

Send Feedback

7-13Specifying Files for Simulation
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Component Interface Tcl Reference

Including Internal Register Map Description in the .svd for Slave Interfaces Connected
to an HPS Component

Qsys supports the ability for IP component designers to specify register map information on their slave
interfaces. This allows components with slave interfaces that are connected to an HPS component to include
their internal register description in the generated .svd file.

To specify their internal register map, the IP component designer must write and generate their own .svd
file and attach it to the slave interface using the following command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside the .svd file. You
can dynamically modify the character data of the .svd file by using the CMSIS_SVD_VARIABLES property.

For example, if you set the CMSIS_SVD_VARIABLES as shown in Example 7-4 in the _hw tcl file, then
in the .svd file if there is a variable {width} that describes the element <size>${width}</size>, it
is replaced by <size>23</size> during generation of the .svd file. Note that substitution works only
within character data (the data enclosed by <element>...</element>) and not on element attributes.

Example 7-4: Setting the CMSIS_SVD_VARIBLES Interface Property

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

Related Information

• Component Interface Tcl Reference

• CMSIS - Cortex Microcontroller Software

Specifying Component Parameters
Components can include parameterized HDL, which allows users of the component flexibility in meeting
their system requirements. For example, a componentmight have a configurablememory size or data width,
where oneHDL implementation can be used inmany different systems, eachwith unique parameters values.

The Parameters tab in the Component Editor allows you specify the parameters that are used to configure
instances of the component in a Qsys system. You can specify various properties for each parameter that
describe how the parameter is displayed and used. You can also specify a range of allowed values that are
checked during the Validation phase. The Parameters table displays the HDL parameters that are declared
in the top-level HDL module. If you have not yet created the top-level HDL file, the parameters that you
create on the Parameters tab are included in the top-level synthesis file template created from the Files tab.

When the component includes HDL files, the parameters match those defined in the top-level module, and
you cannot be add or remove them on theParameters tab. To add or remove the parameters, edit your HDL
source, and then re-analyze the file.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component7-14 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your parameter changes, and then re-
analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each parameter:

• Name—Specifies the name of the parameter.
• Default Value—Sets the default value used in new instances of the component.
• Editable—Specifies whether or not the user can edit the parameter value.
• Type—Defines the parameter type as string, integer, boolean, std_logic, logic vector, natural, or positive.
• Group—Allows you to group parameters in parameter editor.
• Tooltip—Allows you to add a description of the parameter that appears when the user of the component

points to the parameter in the parameter editor.

On the Parameters tab, you can click Preview the GUI at any time to see how the declared parameters
appear in the parameter editor. Figure 7-4 shows parameters with their default values defined, with checks
in the Editable column indicating that users of this component are allowed to modify the parameter value.
Editable parameters cannot contain computed expressions. You can group parameters under a common
heading or section in the parameter editor with theGroup column, and a tooltip helps users of the component
understand the function of the parameter. Various parameter properties allow you to customize the
component’s parameter editor, such as using radio buttons for parameter selections, or displaying an image.

Figure 7-4: Parameters Tab in the Components Editor

If a parameter <n> defines the width of a signal, the signal width must follow the format: <n-1>:0.

In Example 7-5, the first add_parameter command includes commonly-specified properties. The
set_parameter_property command specifies each property individually. The Tooltip column on

Altera CorporationCreating Qsys Components

Send Feedback

7-15Specifying Component Parameters
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

theParameters tabmaps to theDESCRIPTION property, and there is an additional unusedUNITS property
created in the code. The HDL_PARAMETER property specifies that the value of the parameter is specified
in the HDL instance wrapper when creating instances of the component. The Group column in the
Parameters tab maps to the display items section with the add_display_item commands.

Example 7-5: _hw.tcl Created from Entries in the Parameters Tab

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

If an AXI slave's ID bit width is smaller than required for your system, the AXI slave response might
not reach all AXI masters. The formula of an AXI slave ID bit width is calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

Note:

For example, if an AXI slave connects to three AXI masters and the maximum AXI master ID length
of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Related Information
Component Interface Tcl Reference

Allowed Ranges Parameter Property
In a component's hw.tcl file, you can specify valid ranges for parameters. In Qsys, validation checks each
parameter value against the ALLOWED_RANGES property. If the values specified are outside of the allowed
ranges, Qsys displays an error message. Specifying choices for the allowed values enables users of the
component to choose the parameter value from a drop-down list or radio button in the parameter editor
GUI instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single value, or a range of
values defined by a start and end value. Table 7-2 shows examples of the ALLOWED_RANGES property.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Allowed Ranges Parameter Property7-16 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-2: ALLOWED_RANGES Property

MeaningALLOWED_RANGES

a, b, or c

Unique string values. Quotation marks are required
if the strings include spaces

1, 2, 4, 8, or 16

1 through 3, inclusive

1, 2, 3, or 7 through 10 inclusive

{a b c}

{"No Control" "Single Control" "Dual
Controls"}

{1 2 4 8 16}

{1:3}

{1 2 3 7:10}

ForGUI and code example for theALLOWED_RANGES property, refer to Declaring Parameters with Custom
hw.tcl Commands.

Related Information
Declaring Parameters with Custom hw.tcl Commands on page 7-18

Types of Parameters
Qsys uses the following parameter types: user parameters, system information parameters, and derived
parameters.

Related Information
Declaring Parameters with Custom hw.tcl Commands on page 7-18

User Parameters
User parameters are parameters that users of a component can control, and appear in the parameter editor
for instances of the component. User parameters map directly to parameters in the component HDL.

For user parameter code examples, such as AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to
Declaring Parameters with Custom hw.tcl Commands.

System Information Parameters
A SYSTEM_INFO parameter is a parameter whose value is set automatically by the Qsys system. When you
define a SYSTEM_INFO parameter, you provide an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a clock input for your
component. To do this, define the parameter as SYSTEM_INFO of type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

Derived Parameters
Derived parameter values are calculated from other parameters during the Elaboration phase, and are
specified in the hw.tcl file with the DERIVED property. Derived parameter values are calculated from other
parameters during the Elaboration phase, and are specified in the hw.tcl file with the DERIVED property.
For example, you can derive a clock period parameter from a data rate parameter. Derived parameters are

Altera CorporationCreating Qsys Components

Send Feedback

7-17Types of Parameters
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sometimes used to perform operations that are difficult to perform in HDL, such as using logarithmic
functions to determine the number of address bits that a component requires.

For GUI and code example of derived parameters, refer to Declaring Parameters with Custom hw.tcl
Commands.

Parameterized Parameter Widths
Qsys allows astd_logic_vector parameter to have awidth that is defined by another parameter, similar
to derived parameters. The width can be a constant or the name of another parameter.

Declaring Parameters with Custom hw.tcl Commands
The example below illustrates a custom _hw.tcl file, with more advanced parameter commands than those
generatedwhenyou specify parameters in theComponentEditor.Commands include theALLOWED_RANGES
property to provide a range of values for the AXI_ADDRESS_W (Address Width) parameter, and a list of
parameter values for the AXI_DATA_W (Data Width) parameter. This example also shows the parameter
AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED property. In addition, these
commands illustrate the use of the GROUP property, which groups some parameters under a heading in the
parameter editor GUI. You use the ENABLE_STREAM_OUTPUT_GROUP (Include Avalon streaming
source port) parameter to enable or disable the optional Avalon-ST interface in this design, and is displayed
as a check box in the parameter editor GUI because the parameter is of type BOOLEAN. Refer to figure
below to see the parameter editor GUI resulting from these hw.tcl commands.

Example 7-6 illustrates parameter declaration statements and includes a parameter whose value is derived
during the Elaboration phase based on another parameter, instead of being assigned to a specific value.
AXI_NUMBYTES describes the number of bytes in a word of data. Qsys calculates the AXI_NUMBYTES
parameter from theDATA_WIDTHparameter by dividing by 8. The_hw.tcl code defines theAXI_NUMBYTES
parameter as a derived parameter, since its value is calculated in an elaboration callback procedure.

TheAXI_NUMBYTES parameter value is not editable, because its value is based on another parameter value.

Example 7-6: Parameter Declaration Statements

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Parameterized Parameter Widths7-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

Figure 7-5 shows the parameter editor GUI generated from Example 7-6.

Altera CorporationCreating Qsys Components

Send Feedback

7-19Declaring Parameters with Custom hw.tcl Commands
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-5: Parameter Editor Illustrating Parameter Declarations

Related Information

• Component Interface Tcl Reference

• Controlling Interfaces Dynamically with an Elaboration Callback on page 7-26

Validating Parameter Values with a Validation Callback
You can use a validation callback procedure to validate parameter values with more complex validation
operations than the ALLOWED_RANGES property allows. You define a validation callback by setting the
VALIDATION_CALLBACKmodule property to the name of the Tcl callback procedure that runs during
the validation phase. In the validation callback procedure, the current parameter values is queried, and
warnings or errors are reported about the component's configuration.

In Example 7-7, if the optional Avalon streaming interface is enabled, then the control registers must be
wide enough to hold an AXI RAM address, so the designer can add an error message to ensure that the user
enters allowable parameter values.

Example 7-7: Demo AXI Memory Example

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

• Component Interface Tcl Reference

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Validating Parameter Values with a Validation Callback7-20 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Demo AXI Memory Example

Specifying Interface and Signal Types
The Signals tab in the Components Editor allows you to specify the interface and signal type of each signal
in the component. When you add HDL files to the Synthesis Files table on the Files tab, and then click
Analyze Synthesis Files, the signals on the top-level module appear on the Signals tab.

If you have not yet created your top-level HDL file, you can click Add Signal to specify each top-level signal
in the component. For each signal that you add, you must provide the appropriate values in the Name,
Interface, Signal Type, Width, and Direction columns. You can use the error and warning messages at the
bottom of the window to guide your selections. You can edit the signal name by double-clicking the Name
column, and then typing the new name.

After you have analyzed the component's top-level HDL file on the Files tab, you cannot add or remove
signals or change the signal names on the Signals tab. To change the signals, edit your HDL source, and
then click Generate Synthesis File from Signals.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your signal changes, and then re-
analyze the top-level synthesis file.

The Interface column allows you assign a signal to an interface. Each signal must belong to an interface and
be assigned a legal signal type for that interface. To create a new interface of a specific type, select new
<interface type> from the list; this new interface then become available in the list for subsequent signal
assignments. You can highlight all of the signals in an interface and then select an Interface from the list to
apply the Interface name to each signal in the interface.

You edit the interface name on the Interface tab; you cannot edit the interface name on the Signals tab.

Figure 7-6 shows the altera_axi_slave selection available for the axs_awaddr signal. Example 7-8 in the
Adding Interfaces and Managing Interface Settings section shows the _hw.tcl that Qsys generates from these
entries along with other interface information.

Altera CorporationCreating Qsys Components

Send Feedback

7-21Specifying Interface and Signal Types
QII51022
2013.11.4

www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-6: Signals Tab in the Components Editor

Related Information
Component Interface Tcl Reference

Adding Interfaces and Managing Interface Settings
The Interfaces tab in the Component Editor allows you to manage settings for each interface of the
component. The interface name appears on the Signals tab, and in the Qsys System Contents tab when the
component is added to a system.

You can configure the type and properties of each interface. Some interfaces display waveforms that illustrate
the timing for the interface. If you update timing parameters, the waveforms automatically update.

You add additional interfaces by clickingAdd Interface, and then you must specify the signals for the added
interface on the Signals tab. You can remove interfaces that have no assigned signals by clicking Remove
Interfaces With No Signals. Figure 7-7 shows the Avalon Streaming Source interface, named streaming.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Interfaces and Managing Interface Settings7-22 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-7: Interfaces Tab in the Components Editor

In Example 7-8, each interface is created with the add_interface command. You specify the properties
of each interface with the set_interface_property command. The interface's signals are specified
with the add_interface_port command.

Example 7-8: _hw.tcl Created from Entries in the Interface Tab

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

Altera CorporationCreating Qsys Components

Send Feedback

7-23Adding Interfaces and Managing Interface Settings
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Qsys refers to AXI interface parameters to build AXI interconnect. If these parameter settings are
incompatible with the component's HDL behavior, Qsys interconnect and transactions might not work
correctly. To prevent unexpected interconnect behavior, you must set the AXI component parameters
described in Table 7-3.

Table 7-3: AXI Master and Slave Parameters

AXI Slave ParametersAXI Master Parameters

readAcceptanceCapabilityreadIssuingCapability

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Interfaces and Managing Interface Settings7-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Slave ParametersAXI Master Parameters

writeAcceptanceCapabilitywriteIssuingCapability

combinedAcceptanceCapabilitycombinedIssuingCapability

readDataReorderingDepth

Related Information
Component Interface Tcl Reference

Creating Custom _hw.tcl Interface Settings and Properties
Example 7-9 shows clock, reset, AXI slave, and Avalon streaming interfaces using variables for the interface
names that make the file easier to read and update. The interface declaration statement includes the name,
type, and direction of the interface, as well as the associated clock and reset interfaces. Also in the example
below, some of the AXI memory signals use parameters to specify their width.

Example 7-9: Clock, Reset, AXI Slave, and Avalon Streaming Interfaces Using Variables

set CLOCK_INTERFACE "clk"
add_interface $CLOCK_INTERFACE clock end
add_interface_port $CLOCK_INTERFACE clk clk Input 1

set RESET_INTERFACE "reset"
add_interface $RESET_INTERFACE reset end
set_interface_property $RESET_INTERFACE associatedClock clk
set_interface_property $RESET_INTERFACE synchronousEdges DEASSERT
add_interface_port reset reset_n reset_n Input 1

set SLAVE_INTERFACE "slave"
add_interface $SLAVE_INTERFACE axi end
set_interface_property $SLAVE_INTERFACE associatedClock "clk"
set_interface_property $SLAVE_INTERFACE associatedReset "reset"

set_interface_property $SLAVE_INTERFACE \
readAcceptanceCapability 1
...
add_interface_port $SLAVE_INTERFACE axs_wdata wdata \
Input AXI_DATA_W

add_interface_port $SLAVE_INTERFACE axs_wstrb wstrb \
Input AXI_NUMBYTES

add_interface_port $SLAVE_INTERFACE axs_wlast wlast Input 1
...
set STREAMING_INTERFACE "streaming"
add_interface $STREAMING_INTERFACE avalon_streaming start
set_interface_property $STREAMING_INTERFACE associatedClock "clk"
...
add_interface_port $STREAMING_INTERFACE aso_data data Output 8

Altera CorporationCreating Qsys Components

Send Feedback

7-25Creating Custom _hw.tcl Interface Settings and Properties
QII51022
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface_port $STREAMING_INTERFACE aso_valid valid Output 1
add_interface_port $STREAMING_INTERFACE aso_ready ready Input 1

Related Information
Component Interface Tcl Reference

Controlling Interfaces Dynamically with an Elaboration Callback
You can allow user parameters to dynamically control your component's behavior with a an elaboration
callback procedure during the elaboration phase. Using an elaboration callback allows you to change interface
properties, remove interfaces, or add new interfaces as a function of parameter values. You define an
elaboration callback by setting the module property ELABORATION_CALLBACK to the name of the Tcl
callback procedure that runs during the elaboration phase. In the callback procedure, you can query the
parameter values of the component instance, and then change the interfaces accordingly.

Example 7-10 shows an Avalon-ST source interface that is optionally included in an instance of the
component, based on the ENABLE_STREAM_OUTPUT parameter. The ENABLE_STREAM_OUTPUT
parameter was defined previously in the module_property VALIDATION_CALLBACK, and the
streaming interface was defined previously in the static portion of the HDL file.

Example 7-10: Optional Avalon-ST Source Interface Specified with an Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{

 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Component Interface Tcl Reference

• Creating Custom _hw.tcl Interface Settings and Properties on page 7-25

• Validating Parameter Values with a Validation Callback on page 7-20

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Controlling Interfaces Dynamically with an Elaboration Callback7-26 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Controlling File Generation Dynamically with Parameters and a Fileset
Callback

You can use a fileset callback to control which files are created in the output directories during the generation
phase based on parameter values, instead of providing a fixed list of files. In a callback procedure, you can
query the values of the parameters and use them to generate the appropriate files. To define a fileset callback,
you specify a callback procedure name as an argument in the add_fileset command. You can use the
same fileset callback procedure for all of the filesets, or create separate procedures for synthesis and simulation,
or Verilog and VHDL.

Example 7-11 shows a fileset callback using parameters to control filesets in two different ways. The
RAM_VERSION parameter chooses between two different source files to control the implementation of a
RAMblock. For the top-level source file, a customTcl routine generatesHDL that optionally includes control
and status registers, depending on the value of the CSR_ENABLED parameter.

During the generation phase, Qsys creates a a top-level Qsys system HDL wrapper module to instantiate the
component top-level module, and applies the component's parameters, for any parameter whose parameter
property HDL_PARAMETER is set to true.

Example 7-11: Fileset Callback Using Parameters to Control Filesets

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Altera CorporationCreating Qsys Components

Send Feedback

7-27Controlling File Generation Dynamically with Parameters and a Fileset Callback
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Information

• Component Interface Tcl Reference

• Specifying Files for Synthesis and Simulation on page 7-9

Creating a Composed Component or Subsystem
A composed component is a subsystem containing instances of other components. Unlike an HDL-based
component, a composed component'sHDL is created by generatingHDL for the components in the subsystem,
in addition to the Qsys interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a Composed Component or Subsystem7-28 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With a composition callback, you can also instantiate and parameterize subcomponents as a function of the
composed component’s parameter values. You define a composition callback by setting the COMPOSI-
TION_CALLBACKmodule property to the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the subsystem is generated
by generating all of the subcomponents and the top-level that combines them.

To connect instances of your component, youmust define the component's interfaces. Unlike anHDL-based
component, a composed component does not directly specify the signals that are exported. Instead, interfaces
of submodules are chosen as the external interface, and each internal interface's ports are connected through
the exported interface.

Exporting an interface means that you are making the interface visible from the outside of your component,
instead of connecting it internally. You can set the EXPORT_OF property of the externally visible interface
from themain programor the composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is an exact copy of the
subcomponent’s interface, and you are not allowed to change properties on the exported interface. For
example, if the internal interface is a 32-bit or 64-bit master without bursting, then the exported interface
is the same. An interface on a subcomponent cannot be exported and also connected within the subsystem.

When you create an exported interface, the properties of the exported interface are copied from the
subcomponent’s interface without modification. Ports are copied from the subcomponent’s interface with
only one modification; the names of the exported ports on the composed component are chosen to ensure
that they are unique.

Figure 7-8 shows a block diagram for the composed component in Example 7-12.

Figure 7-8: Top-Level of a Composed Component

slave

my_component

pins
my_regs_microcore

clk

reset
altera
reset
bridge

altera
clock
bridge

my_phy_microcore

In Example 7-12, Qsys connects the components, and also connects the clocks and resets. Note that clock
and reset bridge components are required to allow both subcomponents to see common clock and reset
inputs.

Altera CorporationCreating Qsys Components

Send Feedback

7-29Creating a Composed Component or Subsystem
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-12: Composed _hw.tcl File that Instantiates two Subcomponents

package require -exact qsys 13.1
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information
Component Interface Tcl Reference

Creating a Component With Differing Structural Qsys View and Generated
Output Files

There are cases where it might be beneficial to have the structural Qsys system view of a component differ
from the generated synthesis output files. The structural composition callback allows you to define a structural
hierarchy for a component separately from the generated output files.

One application of this feature is for IP designers who want to send out a placed-and-routed component
that represents a Qsys system in order to ensure timing closure for the end-user. In this case, the designer
creates a design partition for the Qsys system, and then exports a post-fit Quartus II Exported Partition File
(.qxp) when satisfied with the placement and routing results.

The designer specifies a .qxp file as the generated synthesis output file for the new component. The designer
can specifywhether to use a simulation output fileset for the custom simulationmodel file, or to use simulation
output files generated from the original Qsys system.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Creating a Component With Differing Structural Qsys View and Generated Output Files7-30 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When the end-user adds this component to their Qsys system, the designer wants the end-user to see a
structural representation of the component, including lower-level components and the address map of the
original Qsys system. This structural view is a logical representation of the component that is used during
the elaboration and validation phases in Qsys.

To specify a structural representation of the component for Qsys, the designer connects components, or
generates a hardware Tcl description of the Qsys system, and then insert the Tcl commands into a structural
composition callback. Example 7-13 shows an _hw.tcl file with a structural composition callback and a .qxp
file as the generated output file. To invoke the structural composition callback use the command:

set_module_property STRUCTURAL_COMPOSITION_CALLBACK structural_hierarchy

Example 7-13: Structural Composition Callback

package require -exact qsys 13.1
set_module_property name example_structural_composition

set_module_property STRUCTURAL_COMPOSITION_CALLBACK \
structural_hierarchy

add_fileset synthesis_fileset QUARTUS_SYNTH \
synth_callback_procedure

add_fileset simulation_fileset SIM_VERILOG \
sim_callback_procedure

set_fileset_property synthesis_fileset TOP_LEVEL \
my_custom_component

set_fileset_property simulation_fileset TOP_LEVEL \
my_custom_component

proc structural_hierarchy {} {

called during elaboration and validation phase
exported ports should be same in structural_hierarchy
and generated QXP

These commands could come from the exported hardware Tcl

 add_interface clk clock sink
 add_interface reset reset sink

 add_instance clk_0 clock_source
 set_interface_property clk EXPORT_OF clk_0.clk_in
 set_interface_property reset EXPORT_OF clk_0.clk_in_reset

 add_instance pll_0 altera_pll
 # connections and connection parameters
 add_connection clk_0.clk pll_0.refclk clock
 add_connection clk_0.clk_reset pll_0.reset reset
}

Altera CorporationCreating Qsys Components

Send Feedback

7-31Creating a Component With Differing Structural Qsys View and Generated Output Files
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

proc synth_callback_procedure { entity_name } {

the QXP should have the same name for ports
as exportedin structural_hierarchy

 add_fileset_file my_custom_component.qxp QXP PATH \
 "my_custom_component.qxp"
}

proc sim_callback_procedure { entity_name } {

the simulation files should have the same name for ports as
exported in structural_hierarchy

add_fileset_file my_custom_component.v VERILOG PATH \
"my_custom_component.v"
 ….
 ….
}

Related Information
Creating a Composed Component or Subsystem on page 7-28

Adding Component Instances to a Static or Generated Component
You can create nested components by adding component instances to an existing component. Both static
and generated components can create instances of other components. You can add child instances of a
component in a _hw.tcl using elaboration callback.

You cannot add child instances in a static part of a _hw.tcl because for Qsys 13.1, the
add_hdl_instance andset_instance_parameter_value commands are not supported
in global context.

Note:

With an elaboration callback, you can also instantiate and parameterize subcomponents with the
add_hdl_instance command as a function of the parent component's parameter values.

When you instantiate multiple nested components, you must create a unique variation name for each
componentwith theadd_hdl_instance command. Prefixing a variationnamewith theparent component
name prevents conflicts in a system. The variation name can be the same across multiple parent components
if the generated parameterization of the nested component is exactly the same.

If you do not adhere to the above naming variation guidelines, Qsys validation-time errors occur,
which are often difficult to debug.

Note:

Related Information

• Static Components on page 7-33

• Generated Components on page 7-34

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Adding Component Instances to a Static or Generated Component7-32 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static Components
Static components always generate the same output, regardless of their parameterization. Components that
instantiate static components must have only static children.

A design file that is static between all parameterizations of a component can only instantiate other static
design files. Since static IPs always render same HDL regardless of parameterization, Qsys generates static
IPs only once across multiple instantiations, meaning they have the same top-level name set. Example 7-14
shows typical usage of the add_hdl_instance command for static components.

Example 7-14: add_hdl_instance for Static Components

package require -exact qsys 13.1

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}

 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

Example 7-14 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-15
shows the top-level HDL instance and the wrapper file created by Qsys.

Example 7-15: Top-Level HDL Instance and Wrapper File

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n

Altera CorporationCreating Qsys Components

Send Feedback

7-33Static Components
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.soft_reset_n (input_wire), // soft_reset.reset_n

...

...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 13.1

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Generated Components
A generated component's fileset callback allows an instance of the component to create unique HDL design
files based on the instance's parameter values. For example, you can write a fileset callback to include a
control and status interface based on the value of a parameter. The callback overcomes a limitation of HDL
languages, which do not allow runtime parameters.

Generated components change their generation output (HDL) based on their parameterization. If a component
is generated, then any component that might instantiate it with multiple parameter sets must also be
considered generated, since its HDL changes with its parameterization. This case has an effect that propagates
up to the top-level of a design.

Since generated components are generated for each unique parameterized instantiation, when implementing
the add_hdl_instance command, you cannot use the same fixed name (specified using
instance_name) for the different variants of the child HDL instances. To facilitate unique naming for
the wrapper of each unique parameterized instantiation of child HDL instances, you must use the following
command so that Qsys generates a unique name for each wrapper. You can then access this unique wrapper
name with a fileset callback so that the instances are instantiated inside the component's top-level HDL.

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Generated Components7-34 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

You can only use this command with a generated component, and is used in the global context, or in an
elaboration callback

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

You can only use this command with a fileset callback. This command returns the value of the auto-
generated fixed name, which you can then use to instantiate inside the top-level HDL.

Example 7-16 shows typical usage of the add_hdl_instance command for generated components.

Example 7-16: add_hdl_instance for Generated Components

package require -exact qsys 13.1
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}

 ...
 # instruct Qsys to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

Altera CorporationCreating Qsys Components

Send Feedback

7-35Generated Components
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \
 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 7-16 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-17
shows the top-level HDL instance and the wrapper file created by Qsys

Example 7-17: Top-Level HDL Instance and Wrapper File

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Generated Components7-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information
Controlling File Generation Dynamically with Parameters and a Fileset Callback on page 7-27

Design Guidelines for Adding Component Instances
In order to promote standard and predictable results when generating static and generated components,
Altera recommends the following best-practices:

• For two different parameterizations of a component, a component must never generate a file of the same
name with different instantiations. The contents of a file of the same name must be identical for every
parameterization of the component.

• If a component generates a nested component, it must never instantiate two different parameterizations
of the nested component using the same instance name. If the parent component's parameterization
affects the parameters of the nested component, the parent component must use a unique instance name
for each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the potential to cause problems
in the following cases:

• Different file names with the same entity names, results in same entity conflicts at compilation-time
• Different contents with the same file name results in overwriting other instances of the component,

and in either file, compile-time conflicts or unexpected behavior.

• Generated components that generate files not based on the output name and that have different content
results in either compile-time conflicts, or unexpected behavior.

Altera CorporationCreating Qsys Components

Send Feedback

7-37Design Guidelines for Adding Component Instances
QII51022
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
Table 7-4 indicates edits made to the Creating Qsys Components content since its creation.

Table 7-4: Document Revision History

ChangesVersionDate

• Added add_hdl_instance.
• Added Creating a Component

With Differing Structural Qsys
View and Generated Output
Files .

13.1.0November 2013

• Consolidated content from
other Qsys chapters.

• Added Upgrading IP
Components to the Latest
Version.

• Updated for AMBA APB
support.

13.0.0May 2013

• Added AMBA AXI4 support.
• Added thedemo_axi_memory

example with screen shots and
example _hw.tcl code.

12.1.0November 2012

• Added new tab structure for
the Component Editor.

• Added AMBA AXI3 support.

12.0.0June 2012

Template update.11.1.0November 2011

• Removed beta status.
• Added Avalon Tri-state

Conduit (Avalon-TC) interface
type.

• Added many interface
templates for Nios custom
instructions and Avalon-TC
interfaces.

11.0.0May 2011

Initial release.10.1.0December 2010

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Creating Qsys ComponentsAltera Corporation

Send Feedback

QII51022
Document Revision History7-38 2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	7. Creating Qsys Components
	Qsys Components
	Component Interface Support
	Component Structure
	Component File Organization
	Component Versions
	Upgrading IP Components to the Latest Version

	Life Cycle of a Component
	Creating Qsys Components in the Component Editor
	Saving a Component and Creating an _hw.tcl File
	Editing a Component with the Component Editor

	Specifying Basic Component Information
	Specifying Files for Synthesis and Simulation
	Specifying HDL Files for Synthesis
	Creating a New HDL File for Synthesis
	Analyzing Synthesis Files
	Naming HDL Signals for Automatic Interface and Type Recognition
	Specifying Files for Simulation
	Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	Specifying Component Parameters
	Allowed Ranges Parameter Property
	Types of Parameters
	User Parameters
	System Information Parameters
	Derived Parameters
	Parameterized Parameter Widths

	Declaring Parameters with Custom hw.tcl Commands
	Validating Parameter Values with a Validation Callback

	Specifying Interface and Signal Types
	Adding Interfaces and Managing Interface Settings
	Creating Custom _hw.tcl Interface Settings and Properties

	Controlling Interfaces Dynamically with an Elaboration Callback
	Controlling File Generation Dynamically with Parameters and a Fileset Callback
	Creating a Composed Component or Subsystem
	Creating a Component With Differing Structural Qsys View and Generated Output Files
	Adding Component Instances to a Static or Generated Component
	Static Components
	Generated Components
	Design Guidelines for Adding Component Instances

	Document Revision History

