Embedded Peripherals IP User Guide

@ Subscribe UG-01085 101 Innovation Drive D
2016.06.17 San Jose, CA 95134 A — A
D Send Feedback

www.altera.com ®
now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Embedded%20Peripherals%20IP%20User%20Guide%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

TOC-2

Contents

Embedded Peripherals IP User Guide Introduction............cccccceveevuerieinecrnnnnnen. 1-1
TOOL STUPPOT L.ttt ettt ettt ettt st b ettt st bebes 1-1
ODBSOIESCONCE.ouviiiiiiiit bbb 1-1
DEVICE SUPPOIL..ecuiriiiiiriiieiiricietrtecttrtere ettt e te sttt sa e ettt b et a bt esne s s 1-2
Document Revision HiStOIV.......ccooiiniiniiininiiiiiiccc s 1-2
SDRAM Controller Core..........cuiiviiiensiiniisensiensiiniesinnsenneniennisenessensenes 2-1
COTE OVEIVIEW ..ottt bbb bbb bbb bbbt 2-1
FUnctional DeSCIiPtiON.......c.eucueueecinieieieecirecirecieiceet ettt sttt seas 2-1
AVAlON-MM INEEITACE.......coiiiciiiiciciici e 2-2

Off-Chip SDRAM INtEITACE......ccceuriuceriieeireaciricreitieseetseeseeeseaseae e asese s sesesseaesseaesenneaes 2-2

Board Layout and Pinout Considerations...........cueeurecurereueuneecunencueeneeeuneerresesessesessesessescseesesenne 2-3

Performance Considerations..........cccucuicincuniiniciniiniiieiciicce e ssesaens 2-4
CONTIGUIALION. ... ettt ettt ettt seseaesanacs 2-4
MemOTY Profile Page........ccveucuriiueiieciricinicieicicineectseeseeeseasesesseseseeese st se s seaessessseeseseseses 2-5

TIMING PAGE....niniiii ettt e e 2-6

Hardware Simulation Considerations.............c.ccucuriiriniininininiiiieecieeissese e seseseens 2-7
SDRAM Controller Simulation Model...........ccocviiicinininininiininicicicicecieeeeseseas 2-7

SDRAM MEMOTY MOMEL.....cucuiiiiciiciricicineicieciecie ettt ssesesesesees 2-7

Example CONfIGUIAtIONS......c.cvcueieueinieeiriciricieitict ettt eeseaeae st ssese st ese e sseae st s s sesessacsees 2-8
Software Programming MoOdel..........ccceuveuiurineinicinicecieceecieecee e tesees et sseaeses 2-9
Clock, PLL and Timing Considerations..........coceeeeurecurencurineiernecinecseenesessesesseesesesessesessesesessesessescssenes 2-9
Factors Affecting SDRAM TIMING.....c.cveeureueurrreieiiieinicireeeneneseiseseseeseseeseeessesesseesessesesseaesseesns 2-10

Symptoms of an Untuned PLL.......c.cccveieincninceicrecirieseeeceseeseeesessesessesesessesessescssssenes 2-10

Estimating the Valid Signal Window........ccccvcrcnincninicinicnecnneieecsecieiesesesessesessesesennes 2-10

Example CalCulation.......c.cvccuecueieueiniciicerieiecciseceseesetesetsese et ssesessesessesese s sseaessescsensene 2-12

Document Revision HiStOry.......cciiiiiiiiiiiiicics s 2-14
Tri-State SDRAM COTe....uuuuuiienuieniiiennieiniienieenienisesiesssssesssessssessssssssssens 3-1
Feature DesCriPtion.......cccciiiviniiiiiiiiciiccic ettt et 3-1

BIOCK DIQGIAIML.....vuiuiiuiniiieiciiieiiciciei ettt sttt sasaes 3-2
Configuration Parameter ... 3-2
MemOTy Profile Page........c.cccueuiiiciiiiieicieiiicicieiiiee ettt sesae e ssaenaenne 3-2

TIMING PAGe....iiiiiiiiiiiiiicc e 3-2

INEEITACE. ...t 3-3

Reset and ClOCk REQUITEMENLES........c.cvueuiuieiuciiiiiieieieiieie ettt sese s sesssee st sse s s ssesscsens 3-7
ATCRITECTUT ... bbb 3-7
Avalon-MM Slave Interface and CSR.........c.cueuuriericiniiniicieiirieieieieeeieeiessesessese e sesessesaens 3-8

Block Level Usage Model..........coiiiiiiiiiiiiciiicincis e ssssssssssssssssssssssssssens 3-9

Document Revision HiStOIV........ccoviiniiiiiiiiiiiiis e 3-10

Altera Corporation

TOC-3

Compact Flash Core.......coueiiiiieiiiinieiininieiiniecininetinnnesssnessssssesssssssesssssees 4-1
COTE OVEIVIEW...oivriiiirirtctsr bbb bbbt s s bt sen s asas 4-1
FUNCIONA] DESCIIPLION. ..ttt ettt 4-1
ReQUITEA COMNMECTIONS.euiuieiiririneacieteirireeeie ettt ettt ettt b sttt s ettt s e setes 4-2
Software Programming MoOdel.........ccccieuiiiiniciicicicicieceeeese e saesens 4-3

HAL System LiDrary SUPPOTT......ccccueuiueuierriiieiiieiieteieeeiesesesessesesesese s sessesessssessssesenseses 4-3
SOFEWATE FileS.....ouviiiiiciiiici e 4-4
REGISTET IMAPS.....cviuiiiiiiiiiiiiiiicci e sttt 4-4
Document Revision HiStOIV.......ccooiiiiininiiniiiiiiiccccs s 4-5

EPCS Serial Flash Controller Core............cuuvuiniiniinenniensiensienninensnesssesnesneenss 5-1
COTE OVEIVIEW...oiuiiiiiitit sttt 5-1
FUnctional DeSCIIPtION......c.eucucuieciicieieieireecirecieice ettt seeseae ettt sseseseae 5-2

Avalon-MM Slave Interface and ReGISters.........ccvueururiueuricrrincurincieineecieeiseeresesesseseseescseeenenne 5-3
CONFIGUIATION. ...ttt ettt ettt sesneae 5-4
Software Programming MoOdel..........ccceuveuiirinirinicinicreciectseceeieseseiessesese st sseese e sseaesees 5-4

HAL System LiDIary SUPPOTL......ccucueureecurecurecreieieieectsicesisesessesesseseseeesessesessesessssesessescssesesssseses 5-4

SOFEWATE FIleS.....ouiuiiiiiiic e 5-5
Document Revision HiStOIY......ccoiiiiiiiiiiiiiiiii s 5-5

JTAG UART COTe..uuueeereennieeerenneeeereeneeeeesssceereassecessssssecssssssssssssssessssssssssssssssessses 6-1
COTE OVEIVIEW ..ottt bbb bbb bbb st 6-1
FUNCHIONAl DESCIIPLION....vetiiriicecieiririecicteirirecci ettt ettt ettt sttt sttt sttt sa s 6-1

Avalon Slave Interface and RegISters..........ccovuiiiiiiiiiiiiiici s 6-2

Read and WIite FIFOS.........cccuiieiiiiiciiiieeieisieseeieseseassie s sesse s ssessssesasssssessesseens 6-2

JTAG INEEITACE.vveeieeeeteeeeeetet ettt ettt ettt s et sebe s st esessesesesensesesesensesesensnsanes 6-2

Host-Target CONNECHION........ceviuiiiciictci s 6-2
CONFAGUIATION. ... 6-3

Configuration Page.........cccuiiiiiiiiii e 6-3

Simulation SEttiNgS.......ccvviiiiiiic s 6-4
Hardware Simulation Considerations..........c..ceeucuriurieeieinienicineinieieiiesesssiessessessssessessesessessessesesans 6-5
Software Programming MOdel............ccociiiiiiiiiii e 6-5

HAL System Library SUPPOTt.......cciiriiiiiciiiiiciicici it sssssssnnes 6-5

SOEWATE FILES.....cuiuiieiiiic et 6-8

Accessing the JTAG UART Core via a HOst PCi.......ccoovviiiiiiiiiiiiicccccccccanns 6-9

REGISTET MAD....tviiieitettt e 6-9

INEEITUPE BERAVIOT. ...ttt st een 6-10
Document Revision HiStOIV........ccocviiiiiiniiiiiiiis e 6-11

UART COTC.uuuuiiiiiiiiiinitieintienieeniieniiensisesssesssssesssssessssesssssessssssssssesssssesssssses 7-1
COTE OVEIVIEW.....uiuriiiirirtett sttt b et s bt sen e 7-1
FUNCHIONA] DESCIIPLION. ..ttt ettt sttt ettt ettt 7-1

Avalon-MM Slave Interface and ReGISters..........cceeuevieiricinicrriniiciieirieirieeeeeeseeesenesenne 7-2

RS-232 INLEITACE. ...t 7-2

Altera Corporation

TOC-4

Transmitter LOZIC. ..ot 7-2
ReECEIVET LOZIC ..ottt 7-2

Baud Rate Generation........coccueuririccieieiniriieieirineecietetstseeaeietetseseeaese e tsesesese st saseseaesesessaseasaesesees 7-3
Instantiating the COTe.........ciiiii s 7-3
Configuration SETNES..........cuiviuiiiiiiiiiiiii s 7-3
Simulation SEttiNgS......c.ovuiiiiiiicr s 7-6
SIMUulation CONSIAETATIONS.eueveeeiriieirieieieieireicie ettt bttt saesees 7-6
Software Programming MOdel............ccociiiiiiiiiii e 7-7
HAL System Library SUPPOTt.......cccuriiuiiciiiniiciiici et sssssssssnes 7-7
SOFEWATE FILES.... ettt st 7-9
REGISTET MAD ...ttt 7-9
INEEITUPE BERAVIOT. ...ttt st ees 7-14
Document Revision HiStOIV. ... 7-15
16550 UART COTe...cuuueiiiineiiiisnnriiisnneeiissnneiiisneeicsseecssssnessssssesssssssesssssasssssssseses 8-1
COTE OVEIVIEW...ouiiiiiiiciii bbb bbbt 8-1
Feature DeSCIiPHION.ceuivririeiiretcttrtec ettt ettt et ettt s s et saenesens 8-1
UNSUPPOTLEA FEATUTES......eiuiuieeieiriineicieiet ettt bttt ettt 8-2
INEEITACE. ...ttt 8-2
General ArCRItECTUTE.......c.cuicvicieiici et aens 8-4

16550 UART General Programming FIow Chart.........cccceveeinicineinicnicneenceecieeesenenes 8-4
Configuration Parameters.........ccveueeieeiicinicieiieiicnieieee ettt sesessaes 8-6

DIMA SUPPOTI ...ttt ettt ettt sa et se et sa s et sae bt se e et sasaesentsaen 8-6
FPGA ReSOUICE USAZE.....c.cuiuimiiiiiiiiiiiiiiiiinint sttt sesenes 8-7
Timing and FIMNaX......ccoiiiiiiieiciiicicceccice et 8-8
AVAlON-MM SIAVE......ciiiiiiciriciricereetce ettt 8-8
Overrun/Underrun COnditions........c.ccceuecurieueiiieinicinieieieeeeeiesenesessesesesesesesessesesessesensens 8-9
Hardware Auto FLOW-COntrol........c..cceeeiieiniiininieiniciricieieeieetseesenesesseesessesessesessssesesenes 8-10

Clock and Baud Rate SeleCtion.........c.ccccuecuricirinieeiniciniciecciecieceeie e sessaesenns 8-11
Software Programming MoOdel............ccoeueiieiniiiniciiieiiccieeeeeee et sessesens 8-11
OVEIVIEW ..t bbb 8-11
SUPPOTTEA FEATUIES.....cuetiiiieeieieiei ettt sttt sttt 8-11
UnNSUPPOTLEd FEATUIES.....ceiuiuieeireriereieteieieteeiet ettt ettt bttt 8-12
CONTIGUIALION.cuvieiiieiictrct ettt saeb s 8-12

16550 UART APttt se st snscsenssae 8-13
DIIVETr EXAMPLES.....cviiriiiiiieiririieieieistccietetststee ettt sttt sttt sttt sttt eens 8-17
Address Map and Register DesCIiPtionscccccuvueuriiueinieinicinieeiieieieienesesseeseseesesessesesessesensenes 8-21
TDT ERT A1ttt et e e e e e ee et e e e e see et e e e e teest e e e et e e st eseeeteentenaeeneennnenaeane 8-22

HOT LNt 8-24
OO 8-26

BT st 8-27

LCT bbb 8-29

44163 OO 8-31

LST e bttt 8-33

41 OO 8-36

o8 OO 8-39
Document Revision HiStOIV........ccooiiiiniininininiiiiiiiiicci e 8-39

Altera Corporation

TOC-5

SPI €Tttt are e sass e s aseesssssaessssssessssasanssnns 9-1
COTE OVEIVIEW.....uiuiiiiirittttst st s s bt sen s anais 9-1
FUNCIONA] DESCIIPLION. ..ttt 9-1

Example ConfigUurations........c.ccceieuieinierniniieiieiieieieieneesseee et sessesessesessesens 9-2
TransSmMItter LOZIC....ccoouiiiiiriiiiccieiiitcereceret ettt e en et nsaas 9-2
RECEIVET LOZIC ...ttt 9-3
Master and SIave MOdes..........cccuiiiiiiiiiiiiiiis s 9-3
CONTIGUIALION. ...ttt sttt bbb senacs 9-5
MaSLEr/SIaVe SELHIES.cvvuviecieiieeiieeieeieee ettt seae 9-5
Data Register SEttings........cccoeuiuiiiiiiiiiiiiiiiiiiciiiii s 9-6
TIMING SETHINES...c.oviiieiiereiiiiceie bbb e nens 9-6
Software Programming MoOdel.........ccccuieuiiiininiciicciecicieceee et saesens 9-7
Hardware Access ROUHNES...........cciiiiiiiiiiii s 9-7
SOFEWATE FileS.....cuviiiiiiiiii e 9-8
REGISTET IMAP.....iiiiiiiiiicccci ettt 9-9
Document Revision HiStOIV.......ccooiinininiiniiiiiiiiiccccciii e 9-12

Optrex 16207 LCD Controller Core..........cccevrerveirenrsnninssssnesssssnsssssssssssssssssssses 10-1
COTE OVEIVIEW...oviiiiiriiit bbb bbb bbb bbb bbb 10-1
FUnctional DeSCIiPtION.......ccueucuricueiieciriciricie ettt esese st eseseseaes 10-1
Software Programming MOdel...........cccvcueieeinicinicininienececieeie et sese e seesesees 10-2

HAL System LiDIary SUPPOTL......c.oucureeurereeeureecrricueieeeesesetnesciseeuessesesseaessesesssesesssessesessesesesseses 10-2
Displaying Characters on the LCD.......ccccccvenicrineiniciricinecneciseeseesesseeseeesesseacssesesssenes 10-2
SOFEWATE FIleS.....cuieiiiiiiii e 10-3
ReGIStEr MAP ..ottt 10-3
INtErTUPt BERAVIOT......ieitiiiiicictc ettt s 10-3
Document Revision HiStOIY.......coiiiiiiiiiiiiiicici s 10-3

o0 (0 7 U 11-1
COTE OVEIVIEW ...ttt bbb bbb bbb 11-1
FUNCtIONAl DeSCIIPLION....vetririiiecieiriieeieteistecet ettt bttt aseneas 11-1

Data INput and OULPUL........cueuieciciriicicitieic et ses s es s sss e nae 11-2
Edge Capture.......cuiiiiiiicii s 11-2
TRQ GENETAtION.....cctieteeteetietieteeteeteeeeeeteee et etee e ereeree e eseessessessessessessessessessensensessessensessesensesensensans 11-2
Example Configurations...........ccciiiiiiiiiiiiiss s ssssssssessssssnes 11-3
AVAlON-MM INEEITACE.......cuieeiuiiiicieiti ettt saes 11-3
CONFAGUIATION. ... 11-3
Basic SEttINES......cviiuiiiiieiiitct s 11-3
INPUL OPLOMS. ...ttt bbb 11-4
SIMUIATION. o 11-5
Software Programming Model............ccoiiiiiiiiiii e 11-5
SOEWATE FIlES.. ..ttt bbb 11-5
REGISTET MAP.....iiiiiiiiiicict e 11-5
INEEITUPE BERAVIOTiutiiiiiiciriciic ettt ees 11-7
SOEWATE FIlES..... ettt 11-8

Altera Corporation

TOC-6

Document Revision HiStOIV. ... 11-8
Avalon-ST Serial Peripheral Interface Core..........cccccvevueiivinueiriirerreiseeressnnee 12-1
COTE OVEIVIEW...ouiiiiiiiitci bbb bbbttt 12-1
FUNCIONA] DESCIIPLION....vtiiieiicieiriieeieteis ettt ettt ettt ettt ettt eene 12-1
INEEITACES.....oueiieiiic ettt 12-1
OPIALION. ...ttt ettt ettt st et a e et s b e et b et a s 12-2
TEMING vttt bbb 12-2
LIMItations. ..ottt 12-3
CONTIGUIALION. ... ettt ettt ssans 12-3
Document Revision HiStOIV.......ccoviiiiniiinininiiiiiiiiiiccccci e 12-3
Avalon-ST Single-Clock and Dual-Clock FIFO Cores..........cceeueeruerireensuerineens 13-1
Avalon-ST Single-Clock and Dual-Clock FIFO COres.........cccueeuricureneeeunecrnecreeneeennecsneeseesesesseecees 13-1
COLE OVEIVIEW ...ttt e e et esaeaeaes 13-1
FUnctional DeSCIiPtION.......ccueucuricueieiciiciricieieiciseacteteie ettt esese st st eeaesesneae 13-1
INEEITACES. ... veeieeeece ettt ettt 13-2
OPErating MOAES........cueueeuciieeeiieciiicieeeieteie ettt sttt esesessesenne 13-3
FALLLEVEL. ettt ettt neacs 13-3
TREESNOLAS. ...ttt 13-3
Parameters... ..o 13-4
Register DesCriPtiOn.... ... e 13-5
Document Revision HiStOrY......ccciiiiiiiniiiiiic s 13-6
MDIO COTe.uuuuiiiiiinnreiiinniiiisnneinissneeiisnneisisieeisssmeessssesssssessssssssssssssssssssssssss 14-1
FUNCtIONAl DeSCIIPLION....uevririiieeieirireecieteireeeet ettt b ettt aneneas 14-1
MDIO Frame FOrmat (ClAUSE 45)......cccvevereeeeeeererieereteeeeeseseeesesesessesesesessesesessssesesessesesessssesesens 14-2
MDIO ClOCK GENETAtION......ueuviuciriaeiieicirietrieieiseietseseietese ettt se s s saesesseseene 14-3
INEEITACES. ... vueveetiecie ittt sttt 14-3
OPEIALION....eiiiiiicii bbb 14-3
Parameter ..o bbb 14-4
Configuration REZISTETS.........c.vuimiuiiiiiiii s snes 14-4
Document Revision HiStOIV........ccoviiiiiiiiiiiiiisese e 14-5
On-Chip FIFO MemoOry Core........uueeiuiiinreiiiseciisneicsnesiseesnnesieeseseessessseess 15-1
COTE OVEIVIEW...uiiiiiiiiicii bbb bbbt 15-1
FUNCHIONA] DESCIIPLION....cvtiiiriuieteirieeeieteis ettt ettt ettt ettt eene 15-1
Avalon-MM Write Slave to Avalon-MM Read Slave...........ccoccuveuricinicinincrnccneenicnennes 15-1
Avalon-ST Sink to AValon-ST SOUICE........cccruviuiiieiriciicieieeeceee e 15-2
Avalon-MM Write Slave to Avalon-ST SOUICE.......c..ccvuuemrieinicrriciiieitcseeeieesseeeseeaenns 15-2
Avalon-ST Sink to Avalon-MM Read Slave...........ccoveeienicinienicnicrceeeeeenseenenenens 15-4

SEALUS INEEITACE.veieiieiicte ettt 15-5
ClOCKING MOAES.....cvieiiniiiiciicieieie ettt 15-5
CONTIGUIALION. ... ettt ettt ssaens 15-5
FIFQO SEtHIES. ..ottt 15-5

Altera Corporation

INEEITACE PATAIMIETETS. ...ccvineeeiiieieeeeieeiteecetet ettt ettt ettt bt et sesbesesae st esessenessenseresseneans 15-6
Software Programming Model............ccociiiiiiiiiiii e 15-7
HAL System Library SUPPOTt.......cc.cviiiiiiriniiiicti e 15-7
SOTEWATE FILES....ouvieieieiceitceeteete ettt ettt ettt et st et st b st st e st st e s ese s entssessssesensssansosessons 15-7
Programming with the On-Chip FIFO MemOTIYy........cccccvuiimimniiniiniiiiiinicicssissesssssssssssssssens 15-7
SOFEWATE CONELOL...viviieiieeieieeeeie ettt ettt st et sae st e s st ese st et s te st ere st enestesssressenesansans 15-8
SOftWare EXAMPIe......covciiiiiiiiicciciccitie ettt 15-11
On-Chip FIFO MemOry APL......ooiiiiiiriiiiniiiti s sssss s sssaes 15-12
altera_avalon_fifo_ INIT(). ittt ettt s et a e s st et re s s sae st enen 15-12
altera_avalon_fifo_1read_Statuis().....ccccveiivueviiiniiieeieeeeitet ettt ess et re st sae s enas 15-12
altera_avalon_fifo_read_ienable().......ccooviiviiiviiiiiiieeiceteete ettt 15-13
altera_avalon_fifo_read_almostfull().......ccoeviiiviiiniieeiciceeeteeee ettt 15-13
altera_avalon_fifo_read_almostempty()......ccccceuveuriuriernirniiererneirieieireisieieiseeensesesseeensenenes 15-13
altera_avalon_fifo_1read_eVent()...c.oocveviiiviiieiiiceiieeecteecteet ettt a et 15-14
altera_avalon_fifo_read_1eVel() ...ttt 15-14
altera_avalon_fifo_ clear_ eVENT() ...ttt aess ettt sae e nan 15-14
altera_avalon_fifo_ write_1€Nable().....oiviviviiiviiieeieiecite ettt ettt 15-15
altera_avalon_fifo_write_almOStIull().....ccoovivieiriiirieieeceeeteeteeeeteete ettt 15-15
altera_avalon_fifo_write_almostempty()......ccccoeuveuriurmerneunieicrririeieseneeeeseseeiesessesesseneens 15-15
altera_avalon_ WITEE_TIO0) .iiviiiiiiiiiiteiceeteest ettt sttt ettt sre s s st esssaesesesseneas 15-16
altera_avalon_write_other_INfO().....ioviviiiviieriieeeeciteisete ettt sae st res e s ssenes 15-16
altera_avalon_fifo_read_fIfO()....ouiviiiniiiiiieeieeetee ettt sttt ettt 15-17
Document Revision HiStOIV.......cccocvviiiiiiiniiiiiiii e 15-17
Avalon-ST Multi-Channel Shared Memory FIFO Core.........cccccceereerineecnnncne. 16-1
COTE OVEIVIEW.....ccveereereeeteeeteeeeeteeiteeseesteesseeseesseeseeseesseessesssessaessesssensesssesssessesseesssessessseseensesseessesssesssensenses 16-1
Performance and Resource UtIIZAtION.ocveieveieririirieeeeicrcecteeereeree e ereseeressesenesserenseresesenns 16-1
FUNCIONA] DESCIIPLION....vtiiiuiiteirireecietets ettt ettt ettt ettt ettt eeas 16-3
INEEITACES. ... ovevieeeriectece ettt ettt et et et oot sees e e s esssrens et et ebeeresserenser e s eresrereerennerennens 16-3
OPIAION. ...ttt ettt ettt et a e et sa e et s b e et b et sa s 16-4
PaTAIMETOIS...ccuveeeeeiectece ettt et et et s e e be et e s e e be e b e ba e beesb e ba e saessenbeenseessesaensaessebaensaesaebeenseeraeraens 16-4
Software Programming MoOdel............ccouiiieinieiniiiiicicicieeeeee et sensesens 16-6
HAL System LiDIary SUPPOTTL......c.ccccuvueuririueinierrieiricieiieieseseeseseiestiessesesessesessesessssesessesessenes 16-6
REGISTET IMAP......oiiiiiiiiicccccc bbb 16-6
Document Revision HiStOIV.......ccooiiiininininiiiiiiiiiicci e 16-8
SPI Slave/JTAG to Avalon Master Bridge Cores..........ccevuerireerirucrcnecrinnecnne 17-1
COTE OVEIVIEW.....ccveericreieteeteeteeeteeteeteeeteesteeseeetseseeseesseessesssessessesssenssessesssenssessenssessesssenssessseseenseessesssensesnes 17-1
FUnctional DeSCIiPtION.......ccueucuricueieiciicireeieieicises ettt escs et eseae s st eeaesesneaes 17-1
PaTAIMELETS. ..ottt te et e e ete e et e e tae e be e s be e sae e bae e b e e st e e bae e beeeabaeesae e baeenbeenseeeseenrraenns 17-3
Document Revision HiStOrY.......ccoiiiiiiiiiiiiiiii s 17-3
Avalon Streaming Channel Multiplexer and Demultiplexer Cores................. 18-1
Avalon Streaming Channel Multiplexer and Demultiplexer Cores..........coceueuveureuercrnerneerserrernenens 18-1
COTE OVEIVIEW.....cveeericreitecteceeeete et et eeteeteeseeste et e essestsestesssesssesseessenssessasssenssessenssensesasenssenssesseseensesssensesnns 18-1
Resource Usage and Performance..........oouiiniiniinsisssssssnsssssss e 18-1

Altera Corporation

TOC-8

VUL PLEXET ...ttt sttt bbbttt st seseaenacs 18-2
FUnctional DesCription.......cvecccueurincneeueinineecieieisineeeieseseseeses et seteasesesesesessesene s sesseneacs 18-2
Parameters.... ..o e 18-3

DEMUIIPLIEXET ...ttt ettt ettt ettt sttt sttt sttt a e b et seaeaene 18-4
FUnctional DesCription.......coveccueirinceceeinineecieieiseeeeiesiseseesesetseseese bt ssesene s seaseneacs 18-4
Parameters.... ..o 18-5

Hardware Simulation Considerations..........c.c.eeecunureueicrniinieincinirnieeisesesesessesesessessseesessssessessenes 18-6

Software Programming Model............ccocuiiiiiiniiii e 18-6

Document Revision HiStOIV. ... 18-7

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores................ 19-1

FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt ettt eeae 19-1
INEEITACES. ..o.uiiiiiiic s 19-2
Operation—Avalon-ST Bytes to Packets Converter Core...........cocevueuemniernierrenerenneenseenens 19-2
Operation—Avalon-ST Packets to Bytes Converter Core...........coocvueremreerricrrenerensesenseenens 19-3

Document Revision HiStOIV.......ccooiiiininininininiiiiiiiiccccii e 19-3

Avalon Packets to Transactions Converter COre........cuuueereeerreecerrnecersneesrsnneess 20-1

COTE OVEIVIEW ...ttt ettt bbbttt a s 20-1
FUnctional DeSCIiPtION.......ccueucuieueiiciriciricieieicine ettt sescs ettt ssese s sese e sseaeseseaes 20-1
INEEITACES. ...ttt ettt 20-1
OPETALION. ...ttt 20-2
Document Revision HiStOry.......ccoiiiiiiiiiiiiic s 20-3

Avalon-ST Round Robin Scheduler Core......uu.ceeeeeeciireeneieeeeenncieeeeeneceerenneeenes 21-1

Avalon-ST Round Robin Scheduler COore.......o ettt ettt 21-1
COTE OVEIVIEW.....cveeuriceeiteeteceeeete et et eeteeteeseeste et e essessseatesssesssessesssentsessasssentsessasssentesssesssenssessenseensesssensesnes 21-1
Performance and Resource UtIHZAtION.oviiiviiireiiieiiesteeeeesteet sttt ettt st sse e sressenese 21-1
FUNCtiONAl DeSCIIPLION.....curireiieeieiriieeieteirteeiet ettt b ettt sae st sneneas 21-2

TIEEITACES. .ouvevieeeeceeeceete ettt ettt st ettt et sa et e s et e ne st e st sae st ere st e se s e et et et en et enesae st erestene 21-3

OPEIAtIONS....coviiiiniiiti bbb bbb 21-3
PaTAIMELETS....oe ettt ettt ettt e et e e e tb e e be e et e e sae e bae et e e tb s esbaeebee st e eebaeebee et e enseeereeenreenns 21-4
Document Revision HiStOIV. ... 21-4

Avalon-ST Delay Core......ccueevvuiiineeiisiinneciineinnneeinnecnnneecneesnneeseesoneessneees 22- 1

AVlON-ST DElay COTe......oviuiiciiciiiiieiieiicre ettt ettt sesaeaenacs 22-1
COTE OVEIVIEW...ouiiiiiiiici bbb bbb 22-1
FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt bttt ettt ettt eae 22-1

RESEL....iiiiit s 22-2

INEEITACES ...ttt e 22-2
Parameters... ..o 22-2
Document Revision HiStOIV.......ccooiiiniininininiiiiiiiiicccci s 22-4

Avalon-ST SPLitter Core......ccovvvvuiiiirreiinirsniinssnenssssnessssssssssssssssssssssssssasssssssases 23- 1
AVAlON-ST SPHLET COTC....euvuieiieiieciieieireicireeteteie ettt eseae sttt seseseseae 23-1

Altera Corporation

COTE OVEIVIEW ... iuiiiiiiiciiii bbb bbb bbb bbbt 23-1
FUNCtiONAl DeSCrIPLION....c.cueiriiieeieirireeeieteisteciet ettt ettt ettt ettt aeneas 23-1
BaACKPIESSUTE........ueuvieiiiiciriieieieicisei ettt ettt ettt s ettt ettt esaesenaes 23-2
INEEITACES. ... vuvuiiieiici ettt bbb 23-2
ParamIeers. ..o 23-2
Document Revision HiStOIV. ... 23-4

Scatter-Gather DMA CoNntroller CoOre.. ... uueireeeiireeiireeniereencerenceesncesesneesssnness 24-1

COTE OVEIVIEW.....ccveeriereeeteeeteereeteeiteeeesteeseeseesseeseeseesssessesssessasssessseseessesssessesssesseessesssesesssesseessesssesssensenses 24-1
EXQMPLE SYSTEIMIS.....cuiuiieiiciiiiitictieteicie ettt sane 24-1
Comparison of SG-DMA Controller Core and DMA Controller Core........ccccoveveueuerrurenenee 24-2

Resource Usage and Performance...........ccccuicueinieinicrnieeiieiieseneeessesessssesessesessssessssesessesessssesenns 24-2

FUNCIONA] DESCIIPLION....vtiirieiicteirieeeieteis ettt ettt ettt sttt ettt eeae 24-3
Functional Blocks and Configurations............cceeueueeuicirieunieenienniereneenseesseesessesessesesens 24-3
DIMA DESCIIPIOTS. c.vvvieerrereiiirrereiitsteretrterenetseeresestste ettt sesse et sassesestsassesestsassesenssasseseasssesens 24-6
EITOr CONAITIONS. c..cviivieietieeeectiecti ettt et er e eb e be s e e esessebe s esseressesensessssessesensesensensans 24-7

PaTAIMETOIS...ccuvecveereceece ettt et este et s este et e s te e be e b e ba e beesb e ba e b aess e beenseessesaensaessebeenbaesaeseenseeraeraens 24-9

SIMUlation COnNSIAEIATIONS.cvvviverieeericeeiereecteerereeree et ereseereseeresteseesessesesesessessesensesessessesensesenserens 24-9

Software Programming MoOdel.........ccccvciiiniininiciniceieeieeeee et senas 24-10
HAL System LiDrary SUPPOTL......c.cccueuiueuricuriireiiieiicieieieieeseesseesesesessesessssesesesessssessssesens 24-10
SOFEWATE FILES....c.vivieveeictiectececcteete ettt ettt ettt et ese et ensete s esssnenserensessnsessenenees 24-10
REGISTET IMAPS....cviviiiiiiiiiiiciicicci et 24-10
DIMA DESCIIPIOTS. .. veuiuirrereetiireritrtereittsteeststssesetseeseetseeesestsse et sassesesesassesestssssestasssesesessssesenes 24-14
TIIEOULS. ...ttt ettt ettt et ereeseeteeseeseeseessessessessessessessensessensensensensensensensensensensensansen 24-16

Programming with SG-DMA CONtIOller..........coceueiimiieinieiiiieiicieieeeeeeeeneesseesessesesenens 24-16
Daata STIUCLULE......veeveeeeteeteceeeereeeec ettt ettt e te e be e s e be e b eess e beensesssensaensensaenseessenseenses 24-16
SGDIMA APl ettt et e e sbe st esssre s ere s essssesserenserensenserensans 24-17
alt_avalon_sgdma_do_async_transfer()..........ceceveeerveeiniernicrenienieeeeeenseeseeesenenenne 24-18
alt_avalon_sgdma_do_sync_transfer()........c.ccouceeeuemniernicrniereieeiieseeseeeseneessesesensesenne 24-18
alt_avalon_sgdma_construct_mem_to_mem_desc()........ccceurererrrerrirerrenerrirerenreerenenenrennne 24-19
alt_avalon_sgdma_construct_stream_to_mem_desc()......ccceeuruerrirerrmreremrererreerrenerensenennenes 24-20
alt_avalon_sgdma_construct_mem_to_stream_desc()........cocceureuerreverrererrmrererrierrencrensenennenes 24-21
alt_avalon_sgdma_enable_desc_poll()......c.cccrueurieuririeinieinicieiiieiiciricecieeesecieeeienenes 24-22
alt_avalon_sgdma_disable_desc_poll()........cccorureururierricurrrereiicinicieiietcecreieeneeseneesnne 24-23
alt_avalon_sgdma_check_descriptor_stattus()........cccoeeureeureeurmeuemrierreereneieneesseeseeenenenes 24-23
alt_avalon_sgdma_register_callback().......cccooeeuvureuemnieiniciniciriicicrccccccce e, 24-23
alt_avalon_sgdma_Start()........cccceveeureerriciriieiicnieieee e 24-24
alt_avalon_sgdma_StOP().....cccvueurmiuriiueiiciicieiiciecieieee et 24-24
alt_avalon_sgdma_open().......ccccoceurermnieiniciniiirieeic i 24-25

Document Revision HiStOIV.......cccooviiiininininiiiiiiiiiicci st 24-25

Modular Scatter-Gather DIMA CoOre....u..eeeeeeeieeeeenecereeneeceeeesssceseesssscssesssseseessns 25-1

OVEIVIEW ...ttt ettt et et eete et e eteeeteeseeeseebeessesbeesseeseenssessesssentsesseassenssessesserseeasenseerseessenteessesssenseersenns 25-1
Feature DesCriPtion.......ccciiiiiiiiiiiiiici e 25-1
MSGDMA Interfaces and Parameters.... .o uiiiieiviiieeeceseeseeese sttt st ste s ssesesbenessenes 25-4
| o 1ol TSR 25-4
MSGDMA Parameter EdITOT.....covviviiiiieieiiieeieeteeseeere sttt be s sse s ere s sessensssenes 25-8

Altera Corporation

TOC-10

MSGDMA DESCIIPLOTS....cuiuiiiiniiiiiiiicici s 25-8
Read and Write Address FIelds........cooivuiiviiieinieineiceeeitees ettt sesse et ess e s s s sess 25-9
Length FIeld......c.ovouiiiciiccccc et 25-10
Sequence Number Field.........ccccciiiiiiiiiiiic e 25-10
Read and Write Burst Count FIelds.......ooiiiiviiiniiiiecineeieetceseets et esse s eess 25-10
Read and Write Stride FIeldS......oiiiiviiiieiiiiiiieeecet ettt ettt et se s st enen 25-10
CONILOLFIELAu ettt ettt sttt ae st e s st et e se b enesaensssessone 25-11

Programming MOdel.........ccccviiiiiiiiiiiii e 25-12
StOp DMA OPeration.....c.cviciiiiiiiiciiiiiiiice s sesssssssaes 25-12
Stop Descriptor OPeration.........cccciiiiininiiii s 25-13
Recovery from Stopped on Error and Stopped on Early Termination..........cccccecuvcurvueace. 25-13

Register Map of MSGDMAL.........cooiiiiiiiiiicss s ssssnes 25-13
Status REGISTETvveieiiictictc s 25-14
CONLrol REGISLETouiuiiiiiiiiiicii s sas 25-15

Modular Scatter-Gather DMA PrefetCher COre.... ittt ssesssesseesseneas 25-17
Feature DesCription........cccciiiiiiiiniiiiiniicitcitcct ettt 25-17
FUnctional DesCription.......covceccueirirerccueieirineecieisineeeseietseseesesetst st sesseseseaesesstseseassesessenes 25-17

Driver IMPlementation.ocecueucueureecuricurieieiseieiseetsees et tsesesstsese et bbbt s et st seens 25-33
alt_msgdma_standard_descriptor_async_transfer...........cceencnieicrnerneenncnnenenennennes 25-33
alt_msgdma_extended_descriptor_async_transfer...........coceeveunenicenerneencrneneenncnnenennes 25-34
alt_msgdma_descriptor_async_transfer..........oeciccenieieinienieeinieneesesesessesesaenaes 25-35
alt_msgdma_standard_descriptor_sync_transfer............ooeeveunieecincrnieicnerneencnnenneennens 25-36
alt_msgdma_extended_descriptor_sync_transfer...........ccemencniercrnennecinerneneeennennens 25-37
alt_msgdma_descriptor_Sync_transfer.........occininicinernieieeneeeessee s 25-38
alt_msgdma_construct_standard_st_to_mm_descriptor.........c.coeceuverriurrerrerrerererrerreenenne 25-39
alt_msgdma_construct_standard_mm_to_st_desCriptor.........cc.coeceuverrerrrcernerrerercrrerreenenn. 25-40
alt_msgdma_construct_standard_mm_to_mm_descriptor.........ccccooeruereerrerreercrrerrienenne 25-41
alt_msgdma_construct_standard_desCriptor.........c.oceuveuneurieireirinicinirieeneieieneneseenennes 25-42
alt_msgdma_construct_extended_st_to_mm_descriptor...........ccooeeeureurerrrcrnerreercrrerreenn. 25-43
alt_msgdma_construct_extended_mm_to_st_descriptor...........ccoceuceuveurerrcrrerreercrrenrennn. 25-44
alt_msgdma_construct_extended_mm_to_mm_descriptor...........ccocvuerverrerriuerscunerriennennee 25-45
alt_msgdma_construct_extended_descriptor..........coecuinieicinirnieiciniinieenieeensenseienaes 25-46
alt_msgdma_register_callback.........cccccveuriueiciniinicieininiciriececcese e 25-47
alt_MSZAMA_OPEIL...iiiiiiiiiciii e 25-48
alt_msgdma_write_standard_desCriptor........ccccoeieuiuniuricinernieieieeeiceseeeeesese e 25-49
alt_msgdma_write_extended_desCriptor..........cocvurieicininieineinieiciereeeeieie e 25-50
alt_avalon_msgdma_iNit.......ccoceeeininieieiniiecee e 25-51
Alt_MSZAMA_IIGuuiiuiiiiiiiiciic e 25-51

Document Revision HiStOIV.......cccovviiiiiiniiiiiiiii e 25-52

DMA CONLLOLIEY COLE..uuunnrenniieennireneiirenierenieeseceessecerssssesssssssssssssssssssssssssssesssns 20-1

Altera Corporation

COTE OVEIVIEW....veiiiireiirieieteete ettt ettt et ettt e et et b et sa e sa et asaesentaen 26-1
FUNCHIONA] DESCIIPLION....vtriirieiietetririeieieteis ettt ettt ettt ettt ettt eene 26-1
Setting Up DMA Transactions.......c.ccveeeeieinniicrenininiieeneieesensesesesessssesssssesessssesssssesens 26-2
The Master Read and WIite POrts......ccccueuririreeieirinineieeirr ettt 26-2
Addressing and Address INCremMenting..........c.ccceveeuicuricrreeeiniennicirieseieesseesessesesesessesens 26-3
ParamEters......ovcueeirieiciirieiccrcett ettt ettt n et 26-3
DMA Parameters (BaSIC)....cuvieivveriveerierereerieeriereseereeesesreseesesesessessesessesessessesessessssessssessesensesssens 26-3

AdVANCEd OPHONS. ...cuveeiuiiiieieieiieieteie ettt ettt et seas 26-4
Software Programming Model............ccociiiiiiiiiiis e 26-5
HAL System Library SUPPOTt.......cc.cviiiiiiiriciciicct s ssssssssssssssssnes 26-5
SOEWATE FIlES..... ettt 26-6
REGISTET MAP.....ciiiiiiiiiicic e 26-6
INtErrupPt BERAVIOL ..ottt sans 26-9
Document Revision HiStOIV.......cccocviiiiiiiniiiiiiii e 26-10

Video Sync Generator and Pixel Converter Cores.........cccoeerevuerenecrirueeesnennnns 27-1

COTE OVEIVIEW...veiiiiicniirieiettee ettt ettt sttt ettt et s e et b et sa e e sa et asaesentsaen 27-1
VIO SYNC GEIETALOTucuieiinieiieiisciitie ettt sttt bbb ssans 27-1
FUNCtional DeSCriPtion.......cvueccueueirineneeieieisieeieieietseee ettt ettt sttt 27-1
Parameters......oucccvirieiiiieicctec ettt et ettt 27-2
SIGNALS. ...ttt 27-3
Timing DIagrammis. ..ottt se s e senns 27-4
PIXE] COMVEITETeuiuiueuiriiecietetri ettt sttt sttt ettt bttt b ekt s bbbt sesees 27-5
FUNCtional DeSCriPtion.......cvieccueueiririneeieieirieeieieietreeeie sttt sttt ettt ettt 27-5
Parameters......oucccvireeiiiiriceiec ettt ettt e ettt 27-5
SIGNALS. ...ttt 27-5
Hardware Simulation Considerations..........ccevreeeueiririnicieieintneeeiestseeeieteestsesesesessssesesesesesseseesesens 27-6
Document Revision HiStOIV.......ccooiiiinininininiiiiiiiiiicci e 27-6

INTEIVAL TimEr COTC.uuuuuuniiieeiirencireeieirseeerrsecerssesersssnss 281

COTE OVEIVIEW...oiviiiiiitit bbb bbb bbb bbb bbb bbb 28-1
FUNctional DeSCIiPtION.......ccueucuricueieeciricireeieieieises ettt ettt esese st eeaesesneaes 28-1
Avalon-MM Slave INterface..........cccviuiciiiniinicinciniiccnciceeecis e sssesaees 28-2
CONTIGUIALION. ... ettt bbbttt s e s sesens 28-2
TIMEOUL PEIIOd.ot 28-2
COUNLEL SIZE....oivieiiiiii bbb s 28-3
Hardware OPIONS.......c.cucueureeeurecuricreieeeieietseeeetsesessesesseseseaseae s sesess st sseaessssesesesessscsesacs 28-3
Configuring the Timer as @ Watchdog Timer........ccococuvneeeinecunecenieerecrecrreereeceseeceeeenes 28-4
Software Programming MOdeL...........ccvucueiecinicinincieieeneciscieeie ettt sese s seesesees 28-4
HAL System LiDIary SUPPOTL......ccucureeurereueureecrrecieieeeisesetsescuseeuessesesseaessesessesesessssessesessesesesseses 28-4
SOFEWATE FIleS.....cuieiiiiiiiii s 28-5
ReGIStEr IMAP ..ottt 28-5
INtErTUPt BERAVIOT......iuitiiiiicirct ettt s 28-8
Document Revision HiStOry......ccciiiiiiiiiiiiiicc s 28-8

MUEEX COTC.uueirnirerrerneraeesesrscesecsssesessssssessnsessssnsese 29-1

COTE OVEIVIEW....iuiiiiiiitiii bbb bbb bbb bbb bbb b s 29-1
Functional Description........cocuiiiiiiiiiciiiiicc st 29-1
CONFAGUIATION. ... 29-2
Software Programming Model............ccociiiiiiiiiiii e 29-2

SOEWATE FIlES..... ettt 29-2

Hardware Access ROULINES.c..cuveieuiinieieiniinieieteienieietstiense et sesesse s sessssesaessens 29-2
MULEX APt e 29-3

Altera Corporation

TOC-12

altera_avalon_mutex_iS_MINE()..cocivirieiiiiiiiiieeeeeeteestee sttt sttt et ettt ne 29-3
altera_avalon_mutex_first_LIOCK().....ooviviriviiiriiieecieeeeteee ettt et sa e 29-3
altera_avalon_MmMUuteX_LOCK()..ooiiiiiiiiiieeeiceteeete ettt sttt sttt sae st sae s 29-4
altera_avalon_MUteX_OPEN()....coeruueurirerriremeirieirieieireieiseetsiesetsese e etsese st ssese e esaesees 29-4
altera_avalon_muteX_trylock().....cccoevuueieiniirieiciiinieiciieccitie et 29-4
altera_avalon_muteX_UNIOCK()....ooiiiiviiiiiieieiceteeetee ettt ettt ettt ss e sae s sresenens 29-5
Document Revision HiStOTY......ceuouiiiiiiiiiicicietcctt ettt 29-5
Vectored Interrupt Controller Core..........coooveiivirvueiriineeieisnecininsneenssseesessnes 30-1
COTE OVEIVIEW...ouiiiiiiiiii bbb bbbttt 30-1
FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt bttt ettt 30-2
EXternal INterfaces.... ..ottt seae 30-3
FUNctional BIOCKS........ccceuiueiiciiiiiiciiciciiciecteieeie et ssse e 30-4

Daisy Chaining VIC COres.......c.coeeuieurierniiieiniericieiesensesessiesesesesstsessesesessesesssessssessssesessssens 30-6
Latency INfOrmation......c.ccciciciicieiieiicrcieeeeciete et ses 30-6
REGISTET IMIAPS.....viiiiiiiiiiiiciicicccc bbb 30-6
Parameters.. ... 30-12
Altera HAL Software Programming Model............ccvicuviieiieiniciniiniicicireeeeiceseeseneseneees 30-13
SOFEWATE FIleS....uiieieiiiici et eane 30-13
MIACTOS. ..ttt 30-13

Data SEIUCTULE.....coouiiiiiiiicci s 30-14

VIC APttt ettt 30-14
Run-time INitialiZation........cccuevieinicrniiiiiieiriciecieececeieees et nsaes 30-16

Board Support PACKage..........covcuiiieiieiicinieiicciicieicee e 30-16
Implementing the VIC in QSYS.....cceueuruieirieinieieiiieiicirieieeieieeseiesenese e ssssesstaesessesessssesseses 30-23
Adding VIC HardWare.........c.ccceuieunicieinieiiceieiieesseesesesessesesssesessese st ssssesessssesssscssssesenns 30-23
SOFtWATe fOI VIC ..ottt sens 30-28
EXAMPLE DESIGNS. ... vuiiiiiciiciicieiieitci ettt 30-30
EXample DeSCriPtion....c.ccruieueueiririeeeieistreeetete ettt sttt ettt sttt steaeaes 30-30
EXAMPLE USAGE.....cuiieiiiiiiiciieiicieei ettt sttt 30-32
SOFtWATe DIESCIIPTION.cueuiueiiriieieieietrece ettt sttt bttt 30-32
Positioning the ISR in Vector Table...........coccviininicinicincccceeeceeeesesseeenenne 30-35
Latency Measurement with the Performance Counter..........ccoccuveveuvineueuneernicrnenceenncennenes 30-36
AQVANCEA TOPICS. uvviririreieieiririrecieteiet sttt ettt ettt bttt bttt ettt ae st 30-37
Real Time Latency CONCEIMS......c.ciueuieeriiieiireiiecieierenseieteeessesesesesessese s sessesessssessssesesscsenns 30-37
SOFEWATE INTEITUPL.....veeieiieieeri ettt ettt bttt bttt ettt 30-40
Document Revision HiStOIV.......ccooviiinininininiiiiiiiiicccii e 30-41
System ID CoOre.....cuuuernuiiiiiiiiienitiencteententnenneessessseesssesssasessassssssessssnens 31-1
COLE OVEIVIEW ...ttt ettt e ettt een s 31-1
FUnctional DeSCIiPtION.......ccueucuricueieiciriciricieieictsi ettt eses et esese s s esc et eaesesneaes 31-1
CONTIGUIALION. ... ceteeeicict ettt ettt bbbt sesesens 31-2
Software Programming MOdel...........cccveueicinicirincinieeniciecieeie et sese s seesesees 31-2
alt_avalon_SYSIA_tESt()..c.eueerreerricirrcieitciectrecie ettt 31-2
Document Revision HiStOrY.......cooiiiiiiiiiiiiiiicii s 31-2

Altera Corporation

TOC-13

Performance COUNLEE COreE......cuuuuuueueeeiiieieeeeeenneeceieeeeeeesaseesssessesssssssssssssssssssssnns 32-1
COTE OVEIVIEW.....cveereeeeeeteereeeeeteeiteeeesseeteeseesseesesseessaessesssessaessesssenseessesssensesssesssessessseseensesseensesssesssensennes 32-1
FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt ettt ettt 32-1

SECHION COUNLETS.....coveerieieeriereceeeteete et esteerteeeesteebeeseesseesseessessesssesseeseessesseenseessesseensesssensesnsensen 32-1
GLODAL COUNLET.....eeeveeeeeieeeecteeetictecteeteeete ettt et e b seseesessesesseseeseneessnsessasossesensensanenes 32-2
REGISTET IMAP.....iiiiiiiiiiccccc bbb 32-2
SYStEM RESEL.....cuiiiiiiiiii e 32-3
CONTIGUIALION.cutieiiiictct ettt ettt sans 32-3
DEfINE COUNLETS.....cuveviveriereneetirereereeerereree e erese et seseesessesesessesessesessessasessesessesensessesensesensessesensons 32-3
Multiple Clock Domain Considerations.........cccceuvereveuereiririneeueieiniseneeeeeseseseesesseseseesesesssseens 32-3
Hardware Simulation COnSIAerations..........cuceevevirverireeiereeerieereereeereeeresseseeseseesessesessessesessesessessesenees 32-3
Software Programming MoOdel...........ccoiueiieiniiiniiiiieicicieeeeereeeeesee st sesaesens 32-3
SOFTWATE FILES....c.vivieveeietieeeecectectee ettt ettt ebs s sse et e s s es e s eseessneessnsesssossesensensanenes 32-3
Using the Performance COUNLET........c.ccceuieiiciieirieeiieiteseeeseeeesseiesssse s ssssesessesenses 32-4
INErTUPt BERAVIOT ..ottt 32-6
Performance COUNTEr APL.......oooiiiieiiieeeieceeeecreeeete ettt e v e et eseseesesseressesensessssensesensesesessans 32-6
PERE _RESET().vivitietieiieectieeeteeteeeteeeteeteve et et esseveseetessesessessesensesansesssssssssensessnsessssensessnsosssseneas 32-6
PERF_START_MEASURINGU()...ccuiuieerierinieeeeetiieeetereteeseesetetesessssesesssssesessnsssessnsssssesssssssssssanas 32-7
PERF_STOP_MEASURINGU()...c.ciierireriieiererieetetcsieesteseseeeesesessssesessssssesesssssssssnsasssessnssssssssnsesens 32-7
PERF_BEGIN).cuvitietiieieectiececeeeeree ettt ereseteeevesvessesessesessessesessssensesessessssessesensesssessssensesensessnns 32-7
PERFE_ENDI() .ottt ettt et e v eveseetesese s essssessesessessssessesensesensessssensssensesensensans 32-8
perf_print_formatted_rePort().....cceerneieiriririeeieierteceieistreeet et 32-8
perf_get total time().....coceeeirieiricieccccc e 32-9
perf_get SeCtiON_tIMeE().....cceueerriiueiiieiiciricieiee ettt sns 32-9
perf_get NUM_STATES().c.ovvuereererireieierieieiereiee ettt s s nssaes 32-10
Alt_GEt_CPU_LTEG().vvuerrrereiiciriciieitctc et 32-10
Document Revision HiStOIV.......ccooviviiiininininiiiiiiiicci e 32-10

Avalon Streaming Test Pattern Generator and Checker Cores............cuccu.... 33-1

Avalon Streaming Test Pattern Generator and Checker Cores..........cooeeuneeeurecurencreeneeenecerenereenenes 33-1
COTE OVEIVIEW.....cveeeriereeeteerieteeeteeeeeseesteeseeeseesteeseeeseeseessesseessaessesseessseseenseesseessessessesssenseessenseenseens 33-1
Resource Utilization and Performance......... ettt st se st sre e v s 33-1
TeSt PaAtterTl GEIEIATOTcvieviereeeeeereeteeeeeteete et eeteeeteeeeebeebeeseesbeeseesseseesseessenseesseessensessseessenseessenseenseens 33-2
Functional DeSCriPtion.......c.ccueuiecuricuriceeineeeiecieicie ettt sseaess e s sese s seesesessesenne 33-2
CONTIGUIALION. ... ettt sttt sttt eeacsees 33-3
TESt PAtterNl CRECKETc.eivieceitceete ettt sttt r sttt eb e st s st enssbesserestensstenseresaanens 33-4
Functional DeSCIiPtioN.......c.eucueueecurecirereieieieiecieieeeeeetseses sttt tsesese s aese s seesesessesnne 33-4
CONTIGUIALION. ... ettt ettt sttt eeacbees 33-5
Hardware Simulation COnSIAErations.........cccuveiviiiireriniiseesestesestese st teestesssressesestessstessesesseneas 33-6
Software Programming MOdeL...........cccvucueinecinicinicinienicieecieeie et sese e seesesees 33-6
HAL System LiDIary SUPPOTL......c.cucurecurereeeireecrricieiereisesesrescsneesessesesseaessesesseesessesessesessssesesseses 33-6
0] 0) 231 (=TT 33-6
ReGIStEr IMAPS....uiuiiiiiiiiiccc e 33-6
Test Pattern Generator AP ...ttt ettt e rs e beebeebeebe e s e essenbeessenseen 33-10
dAta_SOUTCE_TESEE().rviuiiririirieiieietiictitete ettt ettt st e et bbb e s sbessenesbensstensebensenessensonen 33-10
dAta_SOUTCE_INIT()uiuririiieieeiieieecteetee ettt ettt es st et s st es e sbe e ebe b esesbessssessenesbenserensones 33-11

Altera Corporation

TOC-14

data_source_get_id().....occeeuriereieiieicc e as 33-11
data_source_get_supports_packets()........ceceurerrieercrniurieremiieieinerseieieseesie e 33-11
data_source_get_num_channels().......ccocooueueuneuniercininieienieeeeeeese e sesesenaens 33-11
data_source_get_symbols_per_cycle().......ccouueumriemeiniinieieiniiieeeceeee et 33-12
data_source_Set_eNADIE().....ociiviiiviiiieiiciteee ettt ettt a et 33-12
data_source_get_enable().......ccccuuuiueieiniiniieieiniic s 33-12
data_source_Set_thIOTIE()...uv ittt ae ettt st st ene 33-13
data_source_get_throttle().......cccocrieiiiniriciiiieceieeeie et nae 33-13
data_SOUrce_iS_DUSY()..ciuriurrciiirieeiciiiieciii ettt 33-13
data_SoUrcCe_fill_LEVEL()...oviiriiieiiiieteteeeeeeet ettt sttt sttt s v st saene s 33-13
data_source_send_data()......ccoceeueieeereiieeereieeereteee ettt ettt re et s nenene 33-14
Test Pattern CRECKET APL.....ovoiiiiieieeeeeeeeteeteestete ettt sttt sa ettt et ese st et sae st enesaenesaessne 33-14
Ata_SINK_TESET().viuirvieiiriiieitiietet ettt ettt ettt et bt b et ere s enesbestene st esesaensenesseneans 33-14
data_SINK_INTE() cueviiiriieiieietce ettt ettt ettt et sre st ere st enesbesssrestenestenssrensenessenesrens 33-15
data_siNK_@et_Id()..c.cuiueveieiriieiciiricici et 33-15
data_sink_get_supports_pPackets()......c.cccveumiuriererrerrieierriieieieiieeiesesseee e sesesaessenens 33-15
data_sink_get_num_channels().......cc.coeueuniuriemnirniinieieinieicee e 33-16
data_sink_get_symbols_per_cycle().......ccooeumuririeiniinieiciniiieieeece e 33-16
data_SINK_SEt ENADIE()....cciiviiieiiiieteieeetcet ettt ettt sttt r s aan 33-16
data_sink_get_enable()......cc.coeirieiiiiiric e 33-16
data_sinK_Set_thIOTIE()..cieuiviiieiiieieiceitciet ettt a et ae s eae s besseresensnan 33-17
data_sink_get throttle().......oouemuiricineiiiciciccee e saes 33-17
data_sink_get_packet_cOUNt().....ccccceuiuriurieiriiriiciciririceiti e 33-17
data_sink_get_Symbol_cOUNt().....ccccoevuuriiuniuriueieiiiieiciecietsee et 33-17
data_sink_get_error_CouNt()......cccoverierrerniurieineiniinieieisieeieieitiessesse e sens 33-18
data_sink_get_eXCePHiON()......ccveuiuriueueuiuieieiiieieiere ettt 33-18
data_sink_exception_is_eXCePtion()......cvueurureueeremeurimeerieieireieiniseiesesetsesessesesssesessesesseassssneaes 33-18
data_sink_exception_has_data_error().......c.ccecueereerrereurineeeineeineenieesineseeseieeseeeessesesseseneenes 33-19
data_sink_exception_has_missing_SOP()......cceceuerrerrirererrirrirerrernireieneineienessessesenesessesensenns 33-19
data_sink_exception_has_missing_€0p().......ccceeureurerererrerrirerserrirrieieiriieiesessssenessesesaenennes 33-19
data_sink_exception_signalled_error()........c..ccccceveureercurernieieiniinieieinieiesessseesesesesaenenns 33-19
data_sink_exception_channel()........ocovceieerinieiriciniceecneieeceseiesee et eeseseae 33-20
Document Revision HiStOIV.......cccocviiiiiniiniiiiiii e 33-20

Avalon Streaming Data Pattern Generator and Checker Cores...................... 34-1

Altera Corporation

Avalon Streaming Data Pattern Generator and Checker Cores............cooueurieuriniciniernecrsineeenneennnnes 34-1
Data Pattern GENeTAtOr ...ttt 34-1
FUNctional DeSCriPtion.......cvceccueueirireneeieieisieeieieis ettt ettt ettt ettt et 34-1
CONTIGUIALION.cuvieiiiitctcte et ettt s 34-3
Data Pattern CheCKeT ..ottt snaes 34-3
FUNCtional DeSCriPtion.......evceecueueirinineeieieirieeieieis ettt ettt sttt 34-3
CONTIGUIALION.cuvieiiiiiictct ettt ens 34-5
Hardware Simulation Considerations...........cocccuieurieueinieunicinieeieneceeeeesseesseesessesessesesessesenne 34-5
Software Programming MoOdel...........ccvuriieiniciniiiniieiiciicieieeeeeeseeseie e sesaesens 34-5
REGISTET IMAPS....cviiiiiiiiiiiicciicccc b 34-5
Document Revision HiStOIV.......ccooviiniinininininiiiiiiiiccciii e 34-10

TOC-15

| o B OO0 = TR 1o 1 |

COTE OVEIVIEW....oivviiiiirttrt st s a s n bbb s s ssas 35-1
FUNCHIONA] DESCIIPLION. ...ttt ettt ettt ettt ettt ettt ettt 35-2
ALTPLL Me@afunCtioN.......c.cuiueuieiieieiiieiicieicieeie et sstsess e sssse s ssesessssessesessssens 35-2
CLOCK OULPULS....cvtiririeteirtrecieietsts ettt ettt ettt ettt bbbkttt be et s e senes 35-2
PLL Status and Control SigNals...........c.ccveurineeiniciriciniieeeeeecsseenee e sessesessesenne 35-2
System Reset ConSiderations..........cceecueecueiiueiicinierrieeiieseresenesessesesesseseseaesstsesessesessesesssaes 35-3
Instantiating the Avalon ALTPLL COTe......cuciiieiieiicieieieieeeisiesesesessesessesesesesessssessssesessesessenes 35-3
Instantiating the PLL COTe........cccviiiiiiieiiciicieiiciricicie ettt s ssssesenaes 35-3
Hardware Simulation Considerations...........c.cccuicurieueinicinicinieeieeceieeitesseeseeesessesesessesessesenne 35-4
Register Definitions and Bit List.........ccceeeiieinicininiieiieiieicieicieieeseeeseesesesessesesesesessaesessesensenes 35-5
StAtUS REGISTET.....cuiuiiiiiiiiiiiii e 35-5
CONLIOL REGISTET.......cueieieiiiciicicect ettt ens 35-6
Phase Reconfig Control REGISTEr.........couiuiiueiieiniciriiieniciniciecieeiceeeeesesesesseaeseesesensenes 35-6
Document Revision HiStOIV........ccoviiiininininininiiiiiccci e 35-7

Altera MSI to GIC Generator COTe..creeeeeeeeeeenereeeeereseereessssceeesssscesesssssssssssee 30-1

OVEIVIEW ..ottt bbb bbb bbb bbb 36-1
BaCKGIOUNG......ouieiieiiieictre ettt ettt seaens 36-1
Feature DesCriPtion.......cccoiiiiiiciiiiici e 36-1
INterrupt SErviCing PrOCESS.ccovvvivieriririeiiieieieiciccieeeee ettt sene 36-2
Registers Of COMPONENL......c.cuiueuriueuricirieieieeerniacaeteae sttt asesesseseseesesesesessesesessesesseacsseacsssscses 36-3
UnNSUPPOTTEd FEAUTIE.......vuieieeciieciicicirecirecesicie ettt esese st seaeseeneae 36-4
Document Revision HiStOry......cccoiiiiiiiiiiiiic s 36-5

Altera Interrupt Latency Counter Core..........cccevuerrueriruensnerssucnssecsseensecssaesssenes 37-1

OVEIVIBW ..ottt bbb bbb bbb bbb 37-1
Feature DesCriPtion... ..ottt et s 37-2
Avalon-MM Compliant CSR ReZISters..........covuimrimiiiriiimnininiiiicisi s 37-2
32-DIt COUNLET ...ttt 37-4
INterrupt DEteCtOr.....civiiiiiiiiciicccc e 37-4
ComPONENt INTEITACE.......cccuieieeiciiiicii ettt eae 37-5
Component Parameterization..........ccccviiiiniiiiiii s 37-5
SOTEWATE ACCESS....uvereeruiiriiieiiiie ettt sttt 37-6
Routine for Level Sensitive INterrupPLs.........cccuveueiueinciniinieieineieieieireienesesseeenesssessesesessenaes 37-6
Routine for Edge/Pulse Sensitive INtITUPLS........c.cvuvvviviiiiiiciiiiciicicie e 37-6
Implementation DEtails........coveeureeurieueiriieirieirieieire ettt ettt naeaes 37-7
Interrupt Latency Counter ArChiteCture..........ccvuiuiuiiiiicicicininiicsssssssnns 37-7
IP CaVeaLS...ucuiuiiiiieciciiic bbb bbb bbb 37-8
Document Revision HiStOIV........ccoviiiiniiiiiiiiiics e 37-8

Altera GMII t0 RGMII CONVerter COre....uuuceueueieeeecereneerencersseceesseesesscsssnessnees 38-1

OVEIVIEW ...ttt ettt ettt s et st sttt s et bbbt nenestanenenen 38-1
Feature DeSCIiPHiON.occcvviueiririeiitiecttrtec ettt ettt et ss ettt s e et sae b et se s seas 38-1

Altera Corporation

TOC-16

SUPPOTLEd FEAUIES.......cuiuiiiieicicieietecii et 38-1
UnSUPPOIted FEAtUIES.......cucuuieieciieiiicieiiicieieii ettt sae s 38-1
Parameters... ..o bbb e 38-2
IP Configuration Parameter...........cccoviiiiniiiieniiciiisiissssssssssssse s 38-2

Altera GMII to RGMII Converter Core INterface........cveureeeeineeeireeurenernieieeneseseeseeseesesessesesseseeens 38-2
FUNCtIONAl DeSCIIPLION.....cveireiieeieirieeicieteisteciet ettt ettt ettt sae bt aneneas 38-5
ATCRIEECTUTC. ...ttt ettt ettt sttt bees 38-5

Altera HPS EMAC Interface Splitter COre.......cuuieuiurieeieieirieeieieisiieieneiessesessssesiesesessessessessssessens 38-7
Parameter........ociiiiiiiiiiii e 38-7
Document Revision HiStOIV.......cccoviiiiniiiiiiiiiii e 38-14
Altera Generic Quad SPI Controller Core......uuuuuueieieiieeeeeeeeeciieeereeeneneeecseeeenns 39-1
OVEIVIEW ..ttt bbbttt 39-1
FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt bttt ettt eene 39-1
Parameters.....c.cuiuiuiiiiiiiiiii e 39-2
Configuration Device TYPESs.......cccvueuriiueiiueiriciriereieeitcieieieese et ssaesenas 39-2

I/O MOQE....coieiiiiiiicie ettt sttt 39-2

CRIDP SELECES. ... euueiiieeetete ettt ettt ettt bbbttt bttt 39-2
INterface SIGNALS......c.cuiueviciriiiiiiciicicie et 39-2
REGISTETS..c..veiniiiiiiiii bbb 39-5
Register MemOTy Map.......coviiinininiiiiiiii st 39-5
Register DeSCriPtions.... ..o 39-5

Valid Sector Combination for Sector Protect and Sector Erase Command............ccccc...... 39-10

INIOS IT TOOLS SUPPOIL...uuiiiiieieieiririeeietetets ettt ettt b ettt ettt tes 39-11
Booting Nios IT from Flash........c.ccceeiiiininiiciciccecceeeteseeeseseseseseseeaes 39-11

Ni0S IT HAL DIIVET ...ttt 39-13
Document Revision HiStOIV.......cccooviiniiinininiiiiiiiiiiccis e 39-13
Altera Serial Flash Controller Core...........cccooeivienieniinnnniensiiniisensnenseennennnes 40-1
OVEIVIEW ...ttt ettt et esnennes 40-1
FUnctional DeSCIiPtION.......ccueucuricueieiciriciricieieietse ettt st esese st seaesesneae 40-1
Parameters... ..o 40-2
Configuration DEVICe TYPES......cccuvuucurecueuriueiriciriereieeeiseieteiese et seesesesstee s ssesesesesesssscsens 40-2

I/O MOGE....coieiiiieieirecrece ettt ettt ettt ne 40-2

CRIP SELECES.....vuruteeciieieieecir ettt sttt eeacsenaes 40-2
INtErface SIGNALS......cuviueiiciricieiei ettt es 40-2
REGISLETS ...t 40-5
Register MemOTY Map.......ccoviiuiiiiiiiiiiiit bbb 40-5
Register Descriptions.......coccviiiiiiiiiiiiic s 40-5

Valid Sector Combination for Sector Protect and Sector Erase Command..........c.ccoccuueec. 40-10

NI0S II TOOLS SUPPOTL...ceuieieirieiiiciriaciicieitietreietsteee ettt se et eeaesesscsees 40-11
Booting Nios IT from FLash........c.ccceeiinnciriiecncecie et eecssesesesesessesessenes 40-11

NIOS IT HAL DIIVET ...ttt a s nene 40-13
Document Revision HiStOIY.......ccoviiiiiiiniiiiiicii s 40-13
Altera Avalon Mailbox (simple) Core.......ccccevevuirirveirirsersnsnerissecnisserssseenssseesenne 41-1

Altera Corporation

OVEIVIBW. .ottt bbb bbb bbb bbb 41-1
FUNCtiONAl DeSCrIPLION....c.cveireicecieirireeieicteiseeciei ettt ettt ettt bt st bt aseneas 41-1
Message Sending and Retrieval Process.........ccccooiuiiciiininininiiiiiccicissscssncsenns 41-2
Registers 0f COMPONENT.........cviiiiiiiiiiiiiiii s sse s sassssaas 41-2
INEEITACE. ...ttt et 41-4
Component INTErface. ..ottt 41-4
Component Parameterization..........ccocccviiiiinininiiiiiicessee e 41-5
HAL DIIVET ittt sttt 41-6
Feature Description........cccciiiiiniiiiiiiiiiicittrctene ettt 41-6
Document Revision HiStOIV.......cccoviiiiiiiiiiiiiii e 41-11

Altera I>C Slave to Avalon-MM Master Bridge Core..........ccceeerrrrrererereersrerenens 42-1

COTE OVEIVIEW ... vttt s a bbbt b s nssnis 42-1
FUNCIONA] DESCIIPLION. ...ttt ettt ettt ettt ettt 42-1
BlOCK DIAGIam.....vuiuiieciieiiiiciiciicieiciei ettt 42-2
N-Dyte Addressing.......coucuvveueriueinieiieieiieicireereee et sesacsenaes 42-2
N-byte Addressing with N-bit Address Stealing..........ccecccuvuveuenieiniccinneiinicrcrcceeenens 42-2
REAA OPEIatiON....c.cucucuiiiecieieiririeeiete sttt ettt ettt bt sttt bees 42-4
WIHEE OPOIAtiON....uiuiiiiiiiiiiiciirtectrec ettt ettt et n e et sesnenes 42-5
Interacting With MUlti-MaSter.........cccueuiueuieiricinieiicicieeieee et sesaesens 42-7
QSYS PAramieters.......cuiiiiiiiiiiiiiiiicicicc e 42-8
SEGNALS. ...ttt et 42-9
How to Translate the Bridge's I>C Data and I2C I/O Ports to an I2C Interface...........ooeveeereveennec. 42-10
Document Revision HiStOIV.......ccooviiiinininininiiiiiiiiicccii e 42-11

Avalon-MM DDR Memory Half Rate Bridge Core.........ccccceevuereverrneriecnsnenenn. 43-1

Resource Usage and Performance.........c.couccuneceeineecinecuninceeineeeintcsseesessesessesessesesessesessesessssesessesessens 43-2
FUnctional DeSCIiPtiON.......ccueucurircueineiciriciricieieicisectetcie ettt esese s sese e seeaeseseaes 43-2
Instantiating the Core in QSYS.....ccveueureucurecuririeirieireereeeeetseeetseese s st stae et se s sseacsesscseens 43-3
EXAMPLE SYSTOIM...evuieiieciicieicicteict ettt ettt neacaetacs 43-4
Document Revision HiStOrY......ccoiiiiiiiiiiiic s 43-4

Document Revision HiStory.........ceeiiinuinieeiiiininieeinninnnneeennnnnnnneeennnnnneeeennne. A-1

Altera Corporation

Embedded Peripherals IP User Guide
Introduction

2016.06.17

UG-01085 X subscribe C] Send Feedback

This user guide describes the IP cores provided by Altera® that are included in the Quartus® Prime design
software.

The IP cores are optimized for Altera devices and can be easily implemented to reduce design and test
time. You can use the IP parameter editor from Qsys to add the IP cores to your system, configure the
cores, and specify their connectivity.

Altera's Qsys system integration tool is available in the Quartus Prime software subcription edition
version 15.0.

Before using Qsys, review the (Quartus Prime software Release Notes) for known issues and limitations.
To submit general feedback or technical support, click Feedback on the Quartus Prime software Help
menu and also on all Altera technical documentation.

Related Information

+ Quartus Prime Handbook Volume 1: Design and Synthesis

o Quartus Prime Handbook Volume 2: Design Implementation and Optimization
¢ Quartus Prime Handbook Volume 3: Verification

o Quartus Prime Software and Device Support Release Notes

Tool Support

Qsys is a system-level integration tool which is included as part of the Quartus Prime software. Qsys
leverages the easy-to-use interface of SOPC Builder and provides backward compatibility for easy
migration of existing embedded systems.You can implement a design using the IP cores from the Qsys
component library.

All the IP cores described in this user guide are supported by Qsys except for the following cores which
are only supported by SOPC Builder.

o Common Flash Interface Controller Core
+ SDRAM Controller Core (pin-sharing mode)
o System ID Core

Obsolescence

The following IP cores are scheduled for product obsolescence and discontinued support:

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Embedded%20Peripherals%20IP%20User%20Guide%20Introduction&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/00107487-AA$NT00065154
https://documentation.altera.com/#/00008618-AA$NT00060219
https://documentation.altera.com/#/00014470-AA$AA00055378
https://www.altera.com/support/literature/lit-rn.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. UG-01085
1-2 Device Support 2016.06.17

« PCI Lite Core
o Mailbox Core

Altera recommends that you do not use these cores in new designs.

For more information about Altera’s current IP offering, refer to Altera’s Intellectual Property website.

Related Information
Altera's Intellectual Property

Device Support

The IP cores described in this user guide support all Altera device families except the cores listed in the
table below.

Table 1-1: Device Support

Off-Chip Interfaces
EPCS Serial Flash Controller Core All device families except HardCopy® series.

On-Chip Interfaces

On-Chip FIFO Memory Core All device families except HardCopy series.

Different device families support different I/O standards, which may affect the ability of the core to
interface to certain components. For details about supported I/O types, refer to the device handbook for
the target device family.

Document Revision History

Table 1-2: Document Revision History

N R

May 2016 2016.05.03 | Maintenance release.
June 2015 2015.06.12 | Updated for 15.0
July 2014 2014.07.24 | Removed mention of SOPC Builder, updated to Qsys
December 2013 v13.1.0 Removed listing of the DMA Controller core in the Qsys unsupported

list. The DMA controller core is now supported in Qsys.

Removed listing of the MDIO core in Device Support Table. The
MDIO core support all device families that the 10-Gbps Ethernet
MAC MegaCore Function supports.

December 2010 v10.1.0 Initial release.

Altera Corporation Embedded Peripherals IP User Guide Introduction

D Send Feedback

https://www.altera.com/products/intellectual-property/overview.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Embedded%20Peripherals%20IP%20User%20Guide%20Introduction%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SDRAM Controller Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The SDRAM controller core with Avalon ®interface provides an Avalon Memory-Mapped (Avalon-MM)
interface to off-chip SDRAM. The SDRAM controller allows designers to create custom systems in an
Altera device that connect easily to SDRAM chips. The SDRAM controller supports standard SDRAM as
described in the PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of volatile memory.
While SDRAM is relatively inexpensive, control logic is required to perform refresh operations, open-row
management, and other delays and command sequences. The SDRAM controller connects to one or more
SDRAM chips, and handles all SDRAM protocol requirements. Internal to the device, the core presents an
Avalon-MM slave port that appears as linear memory (flat address space) to Avalon-MM master
peripherals.

The core can access SDRAM subsystems with various data widths (8, 16, 32, or 64 bits), various memory
sizes, and multiple chip selects. The Avalon-MM interface is latency-aware, allowing read transfers to be
pipelined. The core can optionally share its address and data buses with other oft-chip Avalon-MM tri-
state devices. This feature is valuable in systems that have limited I/O pins, yet must connect to multiple
memory chips in addition to SDRAM.

Functional Description

The diagram below shows a block diagram of the SDRAM controller core connected to an external
SDRAM chip.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20SDRAM%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
2-2 Avalon-MM Interface 2016.06.17

Figure 2-1: SDRAM Controller with Avalon Interface Block Diagram

Altera FPGA

Clock PLL SDRAM Clock
Source

| Phase Shift

Controller Clock

SDRAM Controller Core SDRAM Chip
(PC100)

clk
cke
addr
ba
cs
cas
ras
we
dq
dgm

>
clock

address

Avalon-MM slave Control
interface data, control
to on-chip

logic waitrequest

lywm
lV""V

Logic

Avalon-MM Slave Port
Interface to SDRAM pins

A
A

readdatavalid

YVYVvVYy
YVYVY

The following sections describe the components of the SDRAM controller core in detail. All options are
specified at system generation time, and cannot be changed at runtime.

Avalon-MM Interface

The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The slave port presents
a flat, contiguous memory space as large as the SDRAM chip(s). When accessing the slave port, the details
of the PC100 SDRAM protocol are entirely transparent. The Avalon-MM interface behaves as a simple
memory interface. There are no memory-mapped configuration registers.

The Avalon-MM slave port supports peripheral-controlled wait states for read and write transfers. The
slave port stalls the transfer until it can present valid data. The slave port also supports read transfers with
variable latency, enabling high-bandwidth, pipelined read transfers. When a master peripheral reads
sequential addresses from the slave port, the first data returns after an initial period of latency. Subsequent
reads can produce new data every clock cycle. However, data is not guaranteed to return every clock cycle,
because the SDRAM controller must pause periodically to refresh the SDRAM.

For details about Avalon-MM transfer types, refer to the Avalon Interface Specifications.

Off-Chip SDRAM Interface
The interface to the external SDRAM chip presents the signals defined by the PC100 standard. These
signals must be connected externally to the SDRAM chip(s) through I/O pins on the Altera device.
Signal Timing and Electrical Characteristics

The timing and sequencing of signals depends on the configuration of the core. The hardware designer
configures the core to match the SDRAM chip chosen for the system. See the Configuration section for
details. The electrical characteristics of the device pins depend on both the target device family and the
assignments made in the Quartus Prime software. Some device families support a wider range of electrical

Altera Corporation SDRAM Controller Core

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 - .
2016.06.17 Synchronizing Clock and Data Signals 2-3

standards, and therefore are capable of interfacing with a greater variety of SDRAM chips. For details,
refer to the device handbook for the target device family.

Synchronizing Clock and Data Signals

The clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency as the clock for the
Avalon-MM interface on the SDRAM controller (controller clock). As in all synchronous designs, you
must ensure that address, data, and control signals at the SDRAM pins are stable when a clock edge
arrives. As shown in the above SDRAM Controller with Avalon Interface block diagram, you can use an
on-chip phase-locked loop (PLL) to alleviate clock skew between the SDRAM controller core and the
SDRAM chip. At lower clock speeds, the PLL might not be necessary. At higher clock rates, a PLL is
necessary to ensure that the SDRAM clock toggles only when signals are stable on the pins. The PLL block
is not part of the SDRAM controller core. If a PLL is necessary, you must instantiate it manually. You can
instantiate the PLL core interface or instantiate an ALTPLL megafunction outside the Qsys system
module.

If you use a PLL, you must tune the PLL to introduce a clock phase shift so that SDRAM clock edges
arrive after synchronous signals have stabilized. See Clock, PLL and Timing Considerations sections for
details.

For more information about instantiating a PLL, refer to PLL Cores chapter. The Nios® II development
tools provide example hardware designs that use the SDRAM controller core in conjunction with a PLL,
which you can use as a reference for your custom designs.

The Nios II development tools are available free for download from www.Altera.com.

Clock Enable (CKE) not Supported

The SDRAM controller does not support clock-disable modes. The SDRAM controller permanently
asserts the CKE signal on the SDRAM.

Sharing Pins with other Avalon-MM Tri-State Devices

If an Avalon-MM tri-state bridge is present, the SDRAM controller core can share pins with the existing
tri-state bridge. In this case, the core’s addr, dq (data) and dgm (byte-enable) pins are shared with other
devices connected to the Avalon-MM tri-state bridge. This feature conserves I/O pins, which is valuable in
systems that have multiple external memory chips (for example, flash, SRAM, and SDRAM), but too few
pins to dedicate to the SDRAM chip. See Performance Considerations section for details about how pin
sharing affects performance.

The SDRAM addresses must connect all address bits regardless of the size of the word so that the low-
order address bits on the tri-state bridge align with the low-order address bits on the memory device. The
Avalon-MM tristate address signal always presents a byte address. It is not possible to drop A0 of the tri-
state bridge for memories when the smallest access size is 16 bits or A0-A1 of the tri-state bridge when the
smallest access size is 32 bits.

Board Layout and Pinout Considerations

When making decisions about the board layout and device pinout, try to minimize the skew between the
SDRAM signals. For example, when assigning the device pinout, group the SDRAM signals, including the
SDRAM clock output, physically close together. Also, you can use the Fast Input Register and Fast
Output Register logic options in the Quartus Prime software. These logic options place registers for the
SDRAM signals in the I/O cells. Signals driven from registers in I/O cells have similar timing characteris-
tics, such as tcq, tgy, and ty.

SDRAM Controller Core Altera Corporation

C] Send Feedback

http://www.altera.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . UG-01085
2-4 Performance Considerations 2016.06.17

Performance Considerations

Under optimal conditions, the SDRAM controller core’s bandwidth approaches one word per clock cycle.
However, because of the overhead associated with refreshing the SDRAM, it is impossible to reach one
word per clock cycle. Other factors affect the core’s performance, as described in the following sections.

Open Row Management

SDRAM chips are arranged as multiple banks of memory, in which each bank is capable of independent
open-row address management. The SDRAM controller core takes advantage of open-row management
for a single bank. Continuous reads or writes within the same row and bank operate at rates approaching
one word per clock. Applications that frequently access different destination banks require extra
management cycles to open and close rows.

Sharing Data and Address Pins

When the controller shares pins with other tri-state devices, average access time usually increases and
bandwidth decreases. When access to the tri-state bridge is granted to other devices, the SDRAM incurs
overhead to open and close rows. Furthermore, the SDRAM controller has to wait several clock cycles
before it is granted access again.

To maximize bandwidth, the SDRAM controller automatically maintains control of the tri-state bridge as
long as back-to-back read or write transactions continue within the same row and bank.

This behavior may degrade the average access time for other devices sharing the Avalon-MM tri-state
bridge.

The SDRAM controller closes an open row whenever there is a break in back-to-back transactions, or
whenever a refresh transaction is required. As a result:

+ The controller cannot permanently block access to other devices sharing the tri-state bridge.
« The controller is guaranteed not to violate the SDRAM’s row open time limit.

Hardware Design and Target Device

The target device affects the maximum achievable clock frequency of a hardware design. Certain device
families achieve higher fy;sx performance than other families. Furthermore, within a device family, faster
speed grades achieve higher performance. The SDRAM controller core can achieve 100 MHz in Altera’s
high-performance device families, such as Stratix" series. However, the core might not achieve 100 MHz
performance in all Altera device families.

The fy;ax performance also depends on the system design. The SDRAM controller clock can also drive
other logic in the system module, which might affect the maximum achievable frequency. For the SDRAM
controller core to achieve fy5x performance of 100 MHz, all components driven by the same clock must
be designed for a 100 MHz clock rate, and timing analysis in the Quartus Prime software must verify that
the overall hardware design is capable of 100 MHz operation.

Configuration

The SDRAM controller MegaWizard has two pages: Memory Profile and Timing. This section describes
the options available on each page.

The Presets list offers several pre-defined SDRAM configurations as a convenience. If the SDRAM
subsystem on the target board matches one of the preset configurations, you can configure the SDRAM

Altera Corporation SDRAM Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Memory Profile Page 2-5

controller core easily by selecting the appropriate preset value. The following preset configurations are

defined:

« Micron MT8LSDT1664HG module

« Four SDR100 8 MByte x 16 chips

« Single Micron MT48LC2M32B2-7 chip
« Single Micron MT48LC4M32B2-7 chip

« Single NEC D4564163-A80 chip (64 MByte x 16)

« Single Alliance AS4LC1M16S1-10 chip
« Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the Memory Profile and Timing tabs
to match the specific configuration. Altering a configuration setting on any page changes the Preset

value to custom.

Memory Profile Page

The Memory Profile page allows you to specify the structure of the SDRAM subsystem such as address
and data bus widths, the number of chip select signals, and the number of banks.

Table 2-1: Memory Profile Page Settings

Data Width

8,16,32,64

SDRAM data bus width. This
value determines the width of the
dq bus (data) and the dgm bus
(byte-enable).

Chip Selects

Architecture

1,2,4,8

Number of independent chip
selects in the SDRAM subsystem.
By using multiple chip selects, the
SDRAM controller can combine
multiple SDRAM chips into one
memory subsystem.

Settings Banks

2,4

Number of SDRAM banks. This
value determines the width of the
ba bus (bank address) that
connects to the SDRAM. The
correct value is provided in the
data sheet for the target SDRAM.

Row

Address
Width
Settings

11, 12,13, 14

12

Number of row address bits. This
value determines the width of the
addr bus. The Row and Column
values depend on the geometry of
the chosen SDRAM. For example,
an SDRAM organized as 4096
(2!2) rows by 512 columns has a
Row value of 12.

Column

>= 8, and less
than Row value

Number of column address bits.
For example, the SDRAM
organized as 4096 rows by 512 (2°)
columns has a Column value of 9.

SDRAM Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2-6 Timing Page 2016.06.17
Share pins via tri-state bridge dq/ | On, Off When set to No, all pins are
dgm/addr I/O pins dedicated to the SDRAM chip.

When set to Yes, the addr, dg, and
dgm pins can be shared with a
tristate bridge in the system. In
this case, select the appropriate
tristate bridge from the pull-down

menu.
Include a functional memory On, Off On When on, Qsys functional
model in the system testbench simulation model for the SDRAM

chip. This default memory model
accelerates the process of creating
and verifying systems that use the
SDRAM controller. See Hardware
Simulation Considerations
section.

Based on the settings entered on the Memory Profile page, the wizard displays the expected memory
capacity of the SDRAM subsystem in units of megabytes, megabits, and number of addressable words.
Compare these expected values to the actual size of the chosen SDRAM to verify that the settings are
correct.

Timing Page
The Timing page allows designers to enter the timing specifications of the SDRAM chip(s) used. The
correct values are available in the manufacturer’s data sheet for the target SDRAM.

Table 2-2: Timing Page Settings

Allowed Default Description
Values Value

CAS latency 1,2,3 Latency (in clock cycles) from a read command to data
out.

Initialization 1-8 2 This value specifies how many refresh cycles the SDRAM

refresh cycles controller performs as part of the initialization sequence
after reset.

Issue one refresh | — 15.625 us | This value specifies how often the SDRAM controller

command every refreshes the SDRAM. A typical SDRAM requires 4,096

refresh commands every 64 ms, which can be achieved by
issuing one refresh command every 64 ms / 4,096 = 15.625

s.
Delay after power | — 100 ps The delay from stable clock and power to SDRAM initiali-
up, before initiali- zation.
zation
Duration of refresh | — 70 ns Auto Refresh period.
command (t_rfc)
Altera Corporation SDRAM Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Hardware Simulation Considerations

Settings Allowed Default Description
Values Value

Duration of 20 ns Precharge command period.

precharge

command (t_rp)

ACTIVE to READ | — 20 ns ACTIVE to READ or WRITE delay.

or WRITE delay

(t_rcd)

Access time (t_ac) |— 17 ns Access time from clock edge. This value may depend on
CAS latency.

Write recovery — 14 ns Write recovery if explicit precharge commands are issued.

time (t_wr, No
auto precharge)

This SDRAM controller always issues explicit precharge

commands.

Regardless of the exact timing values you specify, the actual timing achieved for each parameter is an
integer multiple of the Avalon clock period. For the Issue one refresh command every parameter, the
actual timing is the greatest number of clock cycles that does not exceed the target value. For all other
parameters, the actual timing is the smallest number of clock ticks that provides a value greater than or

equal to the target value.

Hardware Simulation Considerations

This section discusses considerations for simulating systems with SDRAM. Three major components are

required for simulation:

o A simulation model for the SDRAM controller.
« A simulation model for the SDRAM chip(s), also called the memory model.

« A simulation testbench that wires the memory model to the SDRAM controller pins.

Some or all of these components are generated by Qsys at system generation time.

SDRAM Controller Simulation Model

The SDRAM controller design files generated by Qsys are suitable for both synthesis and simulation.
Some simulation features are implemented in the HDL using “translate on/off” synthesis directives that
make certain sections of HDL code invisible to the synthesis tool.

The simulation features are 1mplemented primarily for easy simulation of Nios and Nios II processor
systems using the ModelSim® simulator. The SDRAM controller simulation model is not ModelSim
specific. However, minor changes may be required to make the model work with other simulators.

If you change the simulation directives to create a custom simulation flow, be aware that Qsys overwrites
existing files during system generation. Take precautions to ensure your changes are not overwritten.

Refer to AN 351: Simulating Nios II Processor Designs for a demonstration of simulation of the
SDRAM controller in the context of Nios II embedded processor systems.

SDRAM Memory Model

This section describes the two options for simulating a memory model of the SDRAM chip(s).

SDRAM Controller Core

C] Send Feedback

Altera Corporation

http://www.altera.com/literature/an/an351.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . UG-01085
2-8 Using the Generic Memory Model 2016.06.17

Using the Generic Memory Model

If the Include a functional memory model the system testbench option is enabled at system generation,
Qsys generates an HDL simulation model for the SDRAM memory. In the auto-generated system
testbench, Qsys automatically wires this memory model to the SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process of creating and verifying
systems that use the SDRAM controller. However, the memory model is a generic functional model that
does not reflect the true timing or functionality of real SDRAM chips. The generic model is always
structured as a single, monolithic block of memory. For example, even for a system that combines two
SDRAM chips, the generic memory model is implemented as a single entity.

Using the SDRAM Manufacturer's Memory Model

If the Include a functional memory model the system testbench option is not enabled, you are
responsible for obtaining a memory model from the SDRAM manufacturer, and manually wiring the
model to the SDRAM controller pins in the system testbench.

Example Configurations

The following examples show how to connect the SDRAM controller outputs to an SDRAM chip or chips.
The bus labeled ctl is an aggregate of the remaining signals, such as cas_n, ras_n, cke and we_n.

The address, data, and control signals are wired directly from the controller to the chip. The result is a
128-Mbit (16-Mbyte) memory space.

Figure 2-2: Single 128-Mbit SDRAM Chip with 32-Bit Data

Altera FPGA

SDRAM

Controller addr

ctl

csn

Avalon-MM ¢
interface vy
to
-chi
g data_32_ 128 Mbits
- 16 Mbytes

32 data width cevice

The address and control signals connect in parallel to both chips. The chips share the chipselect (cs_n)
signal. Each chip provides half of the 32-bit data bus. The result is a logical 128-Mbit (16-Mbyte) 32-bit

data memory.

SDRAM Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085) oo
2016.06.17 Software Programming Model -

Figure 2-3: Two 64-MBit SDRAM Chips Each with 16-Bit Data

Altera FPGA
addr
.
SDRAM »
Controller ctl . 64 Mbits 16
ol 8 Mbytes <
cs_n 16 data width device
Ldl
Avalon-MM
interface
to
on-chip
logic
— 64 Mbits 16
8 Mbytes <
P 16 data width cvice
data 32
P
<

The address, data, and control signals connect in parallel to the two chips. The chipselect bus (cs_n[1:0])
determines which chip is selected. The result is a logical 256-Mbit 32-bit wide memory.

Figure 2-4: Two 128-Mbit SDRAM Chips Each with 32-Bit Data

Altera FPGA
SDRAM addr »
Controller e 128 Mbit:
ctl s
> 16 Mbytes < 2
cs_n[0] 32 data width cevice
Avalon-MM
interface
to
on-chip ’
logic
g 128 Mbits 32
a 16 Moytes <
7| 32 data width dvice
cs_n[1]
P data 32
<

Software Programming Model

The SDRAM controller behaves like simple memory when accessed via the Avalon-MM interface. There
are no software-configurable settings and no memory-mapped registers. No software driver routines are
required for a processor to access the SDRAM controller.

Clock, PLL and Timing Considerations

This section describes issues related to synchronizing signals from the SDRAM controller core with the
clock that drives the SDRAM chip. During SDRAM transactions, the address, data, and control signals are
valid at the SDRAM pins for a window of time, during which the SDRAM clock must toggle to capture

SDRAM Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2-10 Factors Affecting SDRAM Timing 2016.06.17

the correct values. At slower clock frequencies, the clock naturally falls within the valid window. At higher
frequencies, you must compensate the SDRAM clock to align with the valid window.

Determine when the valid window occurs either by calculation or by analyzing the SDRAM pins with an
oscilloscope. Then use a PLL to adjust the phase of the SDRAM clock so that edges occur in the middle of
the valid window. Tuning the PLL might require trial-and-error effort to align the phase shift to the
properties of your target board.

For details about the PLL circuitry in your target device, refer to the appropriate device family handbook.
For details about configuring the PLLs in Altera devices, refer to the ALTPLL Megafunction User Guide.

Factors Affecting SDRAM Timing

The location and duration of the window depends on several factors:

 Timing parameters of the device and SDRAM I/O pins — I/O timing parameters vary based on device
family and speed grade.

 Pinlocation on the device — I/O pins connected to row routing have different timing than pins
connected to column routing.

+ Logic options used during the Quartus Prime compilation — Logic options such as the Fast Input
Register and Fast Output Register logic affect the design fit. The location of logic and registers inside
the device affects the propagation delays of signals to the I/O pins.

« SDRAM CAS latency

As a result, the valid window timing is different for different combinations of FPGA and SDRAM
devices. The window depends on the Quartus Prime software fitting results and pin assignments.

Symptoms of an Untuned PLL

Detecting when the PLL is not tuned correctly might be difficult. Data transfers to or from the SDRAM
might not fail universally. For example, individual transfers to the SDRAM controller might succeed,
whereas burst transfers fail. For processor-based systems, if software can perform read or write data to
SDRAM, but cannot run when the code is located in SDRAM, the PLL is probably tuned incorrectly.

Estimating the Valid Signal Window

This section describes how to estimate the location and duration of the valid signal window using timing
parameters provided in the SDRAM datasheet and the Quartus Prime software compilation report. After
tinding the window, tune the PLL so that SDRAM clock edges occur exactly in the middle of the window.

Calculating the window is a two-step process. First, determine by how much time the SDRAM clock can
lag the controller clock, and then by how much time it can lead. After finding the maximum lag and lead
values, calculate the midpoint between them.

These calculations provide an estimation only. The following delays can also affect proper PLL tuning, but
are not accounted for by these calculations.

Altera Corporation SDRAM Controller Core

C] Send Feedback

http://www.altera.com/literature/ug/ug_altpll.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Estimating the Valid Signal Window 2-11

« Signal skew due to delays on the printed circuit board — These calculations assume zero skew.

o Delay from the PLL clock output nodes to destinations — These calculations assume that the delay
from the PLL SDRAM-clock output-node to the pin is the same as the delay from the PLL controller-
clock output-node to the clock inputs in the SDRAM controller. If these clock delays are significantly
different, you must account for this phase shift in your window calculations.

Lag is a negative time shift, relative to the controller clock, and lead is a positive time shift. The
SDRAM clock can lag the controller clock by the lesser of the maximum lag for a read cycle or that for
a write cycle. In other words, Maximum Lag = minimum(Read Lag, Write Lag). Similarly, the SDRAM
clock can lead by the lesser of the maximum lead for a read cycle or for a write cycle. In other words,
Maximum Lead = minimum(Read Lead, Write Lead).

Figure 2-5: Calculating the Maximum SDRAM Clock Lag

Read Data ‘

Read Cycle =
""l" tH (FPGA)

tOH (SORAM)
SDRAM Clock f l j l’
Controller Clock I 1 |

[Read Lag = toH (SDRAM) - t (FPGA)

Write Lag = toLk — tco max (FPGA) — tps (SDRAM)
#

Write Cycle
SDRAM Clock f 1 ,‘/ *
Controller Clock _1f l l
fCLK -
Write Data
DS (SORAM)
1CO_MAX (FPGA) |
SDRAM Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2-12 Example Calculation

Figure 2-6: Calculating the Maximum SDRAM Clock Lead

Write Cycle

SDRAM Clock

Controller Clock

Read Cycle

SDRAM Clock

Controller Clock J 1—

Example Calculation

HZ (SDRAM)

Write Data

tCO_MIN (FPGA)

{DH (SDRAM)

F

v | ‘
~
-

~

| Write Lead = tco MmN (FPGA) - tpH (SDRAM) ‘

[Read Lead = tcik - Iz (SDRAM) — sy (FPGA) |

S I

ICLK -»

Read Data

-« ISy (FPGA)

UG-01085
2016.06.17

This section demonstrates a calculation of the signal window for a Micron MT48LC4M32B2-7 SDRAM
chip and design targeting the Stratix II EP2S60F672C5 device. This example uses a CAS latency (CL) of 3
cycles, and a clock frequency of 50 MHz. All SDRAM signals on the device are registered in I/O cells,
enabled with the Fast Input Register and Fast Output Register logic options in the Quartus Prime

software.

Table 2-3: Timing Parameters for Micron MT48LC4M32B2 SDRAM Device

Value (ns) in -7 Speed Grade
— 5.5

Access time CL=3 tace)
from CLK (pos. |CL =2 tace) — 8
edge) CL=1 tacq) — 17
Address hold time tAl 1 —
Address setup time tas 2 —
CLK high-level width tcu 2.75 —
CLK low-level width ter 2.75 —
CL=3 teke) 7 —
E}ggk ade foL-=a tek@) 10 —
CL=1 teKk() 20 —
CKE hold time tcku 1 —

Altera Corporation

SDRAM Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Example Calculation 2-13
Value (ns) in -7 Speed Grade
Parameter Symbol
CKE setup time tcks 2 —
CS#, RAS#, CAS#, WE#, DQM hold |tcyy 1 —
time
CS#, RAS#, CAS#, WE#, DQM toms 2 —
setup time
Data-in hold time tp 1
Data-in setup time tps 2
Data-out high- CL=3 tHZ(3) >
impedance CL=2 tHz(2) — 8
time CL=1 thz(1) — 17
Data-out low-impedance time trz 1 —
Data-out hold time ton 2.5

The FPGA I/0 Timing Parameters table below shows the relevant timing information, obtained from the
Timing Analyzer section of the Quartus Prime Compilation Report. The values in the table are the
maximum or minimum values among all device pins related to the SDRAM. The variance in timing
between the SDRAM pins on the device is small (less than 100 ps) because the registers for these signals
are placed in the I/O cell.

Table 2-4: FPGA 1/0 Timing Parameters

Clock period toLk 20
Minimum clock-to-output time tco MIN 2.399
Maximum clock-to-output time tco MAX 2.477
Maximum hold time after clock tH MAX -5.607
Maximum setup time before clock | tsy max 5.936

You must compile the design in the Quartus Prime software to obtain the I/O timing information for the
design. Although Altera device family datasheets contain generic I/O timing information for each device,
the Quartus Prime Compilation Report provides the most precise timing information for your specific
design.

The timing values found in the compilation report can change, depending on fitting, pin location, and
other Quartus Prime logic settings. When you recompile the design in the Quartus Prime software, verify
that the I/O timing has not changed significantly.

The following examples illustrate the calculations from figures Maximum SDRAM Clock Lag and
Maximum Lead also using the values from the Timing Parameters and FPGA I/O Timing Parameters
table.

The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag:
Read Lag = tog(SDRAM) -t \ax(FPGA)

SDRAM Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

214 . . UG-01085
P Document Revision History 2016.06.17

=2.5ns - (-5.607 ns) = 8.107 ns

or

Write Lag = tcrx - tco max(FPGA) - tpg(SDRAM)

=20ns -2.477 ns -2 ns = 15.523 ns

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write Lead:
Read Lead = tco Min(FPGA) - tp(SDRAM)

=2.399ns-1.0ns=1.399 ns

or

Write Lead = tcrx — thz3)(SDRAM) - tsy max(FPGA)

=20ns -5.5ns - 5.936 ns = 8.564 ns

Therefore, for this example you can shift the phase of the SDRAM clock from -8.107 ns to 1.399 ns
relative to the controller clock. Choosing a phase shift in the middle of this window results in the value (-
8.107 + 1.399)/2 = -3.35 ns.

Document Revision History

Table 2-5: Document Revision History

I I

May 2016 2016.05.03 Maintenance release.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |9 10 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 | g 10 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

For previous versions of this chapter, refer to the Quartus Handbook Archive.

Altera Corporation SDRAM Controller Core

D Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SDRAM%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tri-State SDRAM Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

The SDRAM controller core with Avalon™ interface provides an Avalon Memory-Mapped (Avalon-MM)
interface to off-chip SDRAM. The SDRAM controller allows designers to create custom systems in an
Altera device that connect easily to SDRAM chips. The SDRAM controller supports standard SDRAM
defined by the PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of volatile memory.
While SDRAM is relatively inexpensive, control logic is required to perform refresh operations, open-row
management, and other delays and command sequences. The SDRAM controller connects to one or more
SDRAM chips, and handles all SDRAM protocol requirements. The SDRAM controller core presents an
Avalon-MM slave port that appears as linear memory (flat address space) to Avalon-MM master
peripherals.

The Avalon-MM interface is latency-aware, allowing read transfers to be pipelined. The core can
optionally share its address and data buses with other off-chip Avalon-MM tri-state devices. This feature
is valuable in systems that have limited I/O pins, yet must connect to multiple memory chips in addition
to SDRAM.

The Tri-State SDRAM has the same functionality as the SDRAM Controller Core with the addition of the
Tri-State feature.

Related Information

o Avalon Interface Specifications
o SDRAM Controller Core on page 2-1

Feature Description

The SDRAM controller core has the following features:

« Maximum frequency of 100-MHz
« Single clock domain design
« Sharing of dg/dgm/addr 1/

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzoog
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Tri-State%20SDRAM%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

3-2 Block Diagram 2016.06.17
Block Diagram
Figure 3-1: Tri-State SDRAM Block Diagram
altera_sdram_controller

Request

Avalon-MM - by s . SDRAM

Interface 7 Main g " Interface

FSM 3
g > Tri-state
& Conduit
Master Signals
Init FSM
Clock Reset

Configuration Parameter

The following table shows the configuration parameters available for user to program during generation
time of the IP core.

Memory Profile Page

The Memory Profile page allows you to specify the structure of the SDRAM subsystem such as address
and data bus widths, the number of chip select signals, and the number of banks.

Table 3-1: Configuration Parameters

Data Width 8, 16, 32, 64 (Bit)s
Chip Selects 1,2,4,8 1 (Bit)s
Architecture
Banks 2,4 4 (Bit)s
Row 11:14 12 (Bit)s
Address Widths
Column 8:14 8 (Bit)s

Timing Page

The Timing page allows designers to enter the timing specifications of the Tri-State SDRAM chip(s) used.
The correct values are available in the manufacturer’s data sheet for the target SDRAM.

Altera Corporation Tri-State SDRAM Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Interface 3-3

Table 3-2: Configuration Timing Parameters

CAS latency cycles 1,2,3 Cycles
Initialization refresh cycles 1:8 2 Cycles
Issue one refresh command 0.0:156.25 15.625 us
every

Delay after power up, before | 0.0:999.0 100.00 us
initialization

Duration of refresh command |0.0:700.0 70.0 ns
(t_rfc)

Duration of precharge 0.0:200.0 20.0 ns
command (t_rp)

ACTIVE to READ or WRITE |0.0:200.0 20.0 ns
delay (t_rcd)

Access time (t_ac) 0.0:999.0 5.5 ns
Write recovery time (t_wr, no |0.0:140.0 14.0 ns

auto precharge)

Interface

The following are top level signals from the SDRAM controller Core

Table 3-3: Clock and Reset Signals

Input System Clock
S 1 Input System asynchronous reset. The signal is asserted
asynchronously, but is de-asserted synchronously
after the rising edge of ssi_clk. The synchronization
must be provided external to this component.
Tri-State SDRAM Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

3-4 Interface 2016.06.17

Table 3-4: Avalon-MM Slave Interface Signals

““

avs_read Input Avalon-MM read control. Asserted to

indicate a read transfer. If present,
readdata is required.

avs_write 1 Input Avalon-MM write control. Asserted to

indicate a write transfer. If present,
writedata is required.

avs_byteenable dam_width Input Enables specific byte lane(s) during

transfer. Each bit corresponds to a byte
in avs_writedata and avs_readdata.

avs_address controller_addr_

Input Avalon-MM address bus.
width

avs_writedata sdram_data_width Input Avalon-MM write data bus. Driven by

the bus master (bridge unit) during
write cycles.

avs_readdata sdram_data width Output Avalon-MM readback data. Driven by
the altera_spi during read cycles.

avs_readdatavalid | Output Asserted to indicate that the avs_

readdata signals contains valid data in
response to a previous read request.

avs_waitrequest 1 Output Asserted when it is unable to respond to

a read or write request.

Table 3-5: Tristate Conduit Master / SDRAM Interface Signals

“m

tcm_grant Input When asserted, indicates that

a tristate conduit master has
been granted access to
perform transactions. tcm_
grant is asserted in
response to the tcm_request
signal and remains asserted
until 1 cycle following the
deassertion of request.

Valid only when pin sharing
mode is enabled.

Altera Corporation Tri-State SDRAM Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Interface 3-5
““
LB LS Output The meaning of tem_

request depends on the
state of the tcm_grant
signal, as the following rules
dictate:

 When tcm_request is
asserted and tcm_grant is
deasserted, tcm_request
is requesting access for
the current cycle.

o When tcm_request is
asserted and tcm_grant is
asserted, tcm_request is
requesting access for the
next cycle; consequently,
tcm_request should be
deasserted on the final
cycle of an access.

Because tcm_request is
deasserted in the last cycle of
a bus access, it can be
reasserted immediately
following the final cycle of a
transfer, making both
rearbitration and continuous
bus access possible if no
other masters are requesting
access.

Once asserted, tcm_request
must remain asserted until
granted; consequently, the
shortest bus access is 2
cycles.

Valid only when pin-sharing
mode is enabled.

sdram_dqg_width sdram_data_width Output SDRAM data bus output.

Valid only when pin-sharing
mode is enabled

sdram_dg_in sdram_data_width Input SDRAM data bus output.
Valid only when pin-sharing
mode is enabled.
Tri-State SDRAM Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface

UG-01085
2016.06.17

sdram_dqg_oen

Output

SDRAM data bus input.

Valid only when pin-sharing
mode is enabled.

sdram_dq

sdram_data width

Input/Output

SDRAM data bus.

Valid only when pin-sharing
mode is disabled.

sdram_addr

sdram_addr_width

Output

SDRAM address bus.

sdram_ba

sdram_bank_width

Output

SDRAM bank address.

sdram_dgm

dgm_width

Output

SDRAM data mask. When
asserted, it indicates to the
SDRAM chip that the
corresponding data signal is
suppressed. There is one
DQM line per 8 bits data
lines

sdram_ras_n

Output

Row Address Select. When
taken LOW, the value on the
tcm_addr_out bus is used to
select the bank and activate
the required row.

sdram_cas_n

Output

Column Address Select.
When taken LOW, the value
on the tcm_addr_out bus is
used to select the bank and
required column. A read or
write operation will then be
conducted from that
memory location, depending
on the state of tcm_we_out.

sdram_we_n

Output

SDRAM Write Enable,
determins whether the
location addressed by tem_
addr_out is written to or
read from.

0=Read
1=Write

sdram_cs_n

Output

SDRAM Chip Select. When
taken LOW, will enables the
SDRAM device.

Altera Corporation

Tri-State SDRAM Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Reset and Clock Requirements
“mm
sdram_cke Output SDRAM Clock Enable. The

SDRAM controller does not
support clock-disable modes.
The SDRAM controller
permanently asserts the tem_
sdr_cke_out signal on the
SDRAM.

Note: The SDRAM controller does not have any configurable control status registers (CSR).

Reset and Clock Requirements

The main reset input signal to the SDRAM is treated as an asynchronous reset input from the SDRAM
core perspective. A reset synchronizer circuit, as typically implemented for each reset domain in a
complete SOC/ASIC system is not implemented within the SDRAM core. Instead, this reset synchronizer
circuit should be implemented externally to the SDRAM, in a higher hierarchy within the complete
system design, so that the “asynchronous assertion, synchronous de-assertion” rule is fulfilled.

The SDRAM core accepts an input clock at its clk input with maximum frequency of 100-MHz. The
other requirements for the clock, such as its minimum frequency should be similar to the requirement of
the external SDRAM which the SDRAM is interfaced to.

Architecture

The SDRAM Controller connects to one or more SDRAM chips, and handles all SDRAM protocol
requirements. Internal to the device, the core presents an Avalon-MM slave ports that appears as a linear
memory (flat address space) to Avalon-MM master device.

The core can access SDRAM subsystems with:

o Various data widths (8-, 16-, 32- or 64-bits)
o Various memory sizes
o Multiple chip selects

The Avalon-MM interface is latency-aware, allowing read transfers to be pipelined. The core can
optionally share its address and data buses with other off-chip Avalon-MM tri-state devices.

Note: Limitations: for now the arbitration control of this mode should be handled by the host/master in
the system to avoid a device monopolizing the shared buses.

Control logic within the SDRAM core responsible for the main functionality listed below, among others:

o Refresh operation
« Open_row management
+ Delay and command management

Use of the data bus is intricate and thus requires a complex DRAM controller circuit. This is because data
written to the DRAM must be presented in the same cycle as the write command, but reads produce
output 2 or 3 cycles after the read command. The SDRAM controller must ensure that the data bus is
never required for a read and a write at the same time.

Tri-State SDRAM Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
3-8 Avalon-MM Slave Interface and CSR 2016.06.17

Avalon-MM Slave Interface and CSR

The host processor perform data read and write operation to the external SDRAM devices through the
Avalon-MM interface of the SDRAM core.

Please refer to Avalon Interface Specifications for more information on the details of the Avalon-MM Slave
Interface.

Related Information
Avalon Interface Specifications

Altera Corporation Tri-State SDRAM Core

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Block Level Usage Model 3-9

Block Level Usage Model
Figure 3-2: Shared-Bus System

Altera FPGA

Qsys System

altera_sdram_tri_controller

SDRAM
Chips

Avalon-MM Slave Port
SDRAM Interface

Generic Tri-State Controller

Tri-State Conduit Pin Sharer
Tri-State Conduit Bridge

QSys Interconnect

Second Tri-

q_b P
» State

L
Device

Y

Tri-State SDRAM Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

- . UG-01085
3-10 Document Revision History 2016.06.17

Document Revision History

Table 3-6: Document Revision History

N R

July 2014 | 20140724 | Initial release.

Altera Corporation Tri-State SDRAM Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tri-State%20SDRAM%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

Compact Flash Core

The CompactFlash core allows you to connect systems built on Osys to CompactFlash storage cards in
true IDE mode by providing an Avalon Memory-Mapped (Avalon-MM) interface to the registers on the
storage cards. The core supports PIO mode 0.

The CompactFlash core also provides an Avalon-MM slave interface which can be used by Avalon-MM
master peripherals such as a Nios® II processor to communicate with the CompactFlash core and manage

its operations.

Functional Description

Figure 4-1: System With a CompactFlash Core

<+“—D

Altera FPGA
address > ;:S:
data =2
d o N
+—> = §
% AL r_§
= <
Avalon-MM ‘:E
Master S
(e.g.CPU)) g
% address S
£ "z
data _a
| T=
AL S
=

Avalon-to-
Compact Flash

Compact FLash
Device

Registers

cfetl

idectl

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,

I1sO
9001:2008
Registered

product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134

JAITERAN

now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Compact%20Flash%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. . UG-01085
4-2 Required Connections 2016.06.17

As shown in the block diagram, the CompactFlash core provides two Avalon-MM slave interfaces: the ide
slave port for accessing the registers on the CompactFlash device and the ctl slave port for accessing the
core's internal registers. These registers can be used by Avalon-MM master peripherals such as a Nios II
processor to control the operations of the CompactFlash core and to transfer data to and from the
CompactFlash device.

You can set the CompactFlash core to generate two active-high interrupt requests (IRQs): one signals the
insertion and removal of a CompactFlash device and the other passes interrupt signals from the Compact-
Flash device.

The CompactFlash core maps the Avalon-MM bus signals to the CompactFlash device with proper
timing, thus allowing Avalon-MM master peripherals to directly access the registers on the CompactFlash
device.

For more information, refer to the CF+ and CompactFlash specifications available at www.compact-
flash.org.

Required Connections

The table below lists the required connections between the CompactFlash core and the CompactFlash
device.

Table 4-1: Core to Device Required Connections

CompactFlash Interface Signal Pin Type CompactFlash Pin Number
Name

addr[0] Output 20
addr[1] Output 19
addr[2] Output 18
addr[3] Output 17
addr[4] Output 16
addr[5] Output 15
addr[6] Output 14
addr[7] Output 12
addr[8] Output 11
addr[9] Output 10
addr[10] Output 8
atasel_n Output 9
cs_n[0] Output 7
cs_n[1] Output 32
data[0] Input/Output 21
data[1] Input/Output 22
Altera Corporation Compact Flash Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Compact%20Flash%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Software Programming Model 4-3
Name
data[2] Input/Output 23
data[3] Input/Output 2
data[4] Input/Output 3
data[5] Input/Output 4
data[6] Input/Output 5
data[7] Input/Output 6
data[8] Input/Output 47
data[9] Input/Output 48
data[10] Input/Output 49
data[11] Input/Output 27
data[12] Input/Output 28
data[13] Input/Output 29
data[14] Input/Output 30
data[15] Input/Output 31
detect Input 25 or 26

intrg Input 37
iord_n Output 34
iordy Input 42
iowr_n Output 35

power Output CompactFlash power controller, if present
reset_n Output 41
rfu Output 44
we_n Output 46

Software Programming Model

This section describes the software programming model for the CompactFlash core.

HAL System Library Support

The Altera-provided HAL API functions include a device driver that you can use to initialize the
CompactFlash core. To perform other operations, use the low-level macros provided.

For more information on the macros, refer to the "Software Files" section.

Compact Flash Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Compact%20Flash%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
4-4 Software Files 2016.06.17

Related Information
Software Files on page 4-4

Software Files

The CompactFlash core provides the following software files. These files define the low-level access to the
hardware. Application developers should not modify these files.

« altera_avalon_cf_regs.h—The header file that defines the core's register maps.

« altera_avalon_cf.h, altera_avalon_cf.c—The header and source code for the functions and variables
required to integrate the driver into the HAL system library.

Register Maps

This section describes the register maps for the Avalon-MM slave interfaces.

Ide Registers

The ide port in the CompactFlash core allows you to access the IDE registers on a CompactFlash device.

Table 4-2: Ide Register Map

Offset

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head
7 Status Command

14 Alt Status Device Control

Ctl Registers

The ctl port in the CompactFlash core provides access to the registers which control the core’s operation
and interface.

Table 4-3: Ctl Register Map

Offset Register
IECI RN R R R
cfctl Reserved | IDET | RST | PWR DET
1 idectl Reserved 11DE
2 Reserved Reserved
Altera Corporation Compact Flash Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Compact%20Flash%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Cfctl Register 4-5

Fields
Offset

egier _
CEe s 2 Ja e]

Reserved | Reserved

Cfctl Register

The cfctl register controls the operations of the CompactFlash core. Reading the cfctl register clears the
interrupt.

Table 4-4: cfctl Register Bits

Detect. This bit is set to 1 when the core detects a CompactFlash
device.

1 PWR RW Power. When this bit is set to 1, power is being supplied to the
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the CompactFlash device is held in
a reset state. Setting this bit to 0 returns the device to its active
state.

3 IDET RW Detect Interrupt Enable. When this bit is set to 1, the Compact-
Flash core generates an interrupt each time the value of the det bit
changes.

idectl Register

The idectl register controls the interface to the CompactFlash device.

Table 4-5: idectl Register

11DE IDE Interrupt Enable. When this bit is set to 1, the CompactFlash
core generates an interrupt following an interrupt generated by the
CompactFlash device. Setting this bit to 0 disables the IDE
interrupt.

Document Revision History

Table 4-6: Document Revision History

I I

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys
December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.
July 2010 v10.0.0 No change from previous release.
Compact Flash Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Compact%20Flash%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4-6 Document Revision History

UG-01085
2016.06.17

I I S

November 2009

No change from previous release.

v9.1.0
March 2009 v9.0.0 No change from previous release.
November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 Added the mode supported by the CompactFlash core.

For previous versions of this chapter, refer to the Quartus Handbook Archive.

Altera Corporation

Compact Flash Core

D Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Compact%20Flash%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

EPCS Serial Flash Controller Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The EPCS serial flash controller core with Avalon interface allows Nios II systems to access an Altera

EPCS serial configuration device. Altera provides drivers that integrate into the Nios II hardware

abstraction layer (HAL) system library, allowing you to read and write the EPCS device using the familiar

HAL application program interface (API) for flash devices.

Using the EPCS serial flash controller core, Nios II systems can:

o Store program code in the EPCS device. The EPCS serial flash controller core provides a boot-loader

feature that allows Nios II systems to store the main program code in an EPCS device.

« Store non-volatile program data, such as a serial number, a NIC number, and other persistent data.

« Manage the device configuration data. For example, a network-enabled embedded system can receive
new FPGA configuration data over a network, and use the core to program the new data into an EPCS

serial configuration device.

The EPCS serial flash controller core is Qsys-ready and integrates easily into any Qsys-generated
system. The flash programmer utility in the Nios II IDE allows you to manage and program data

contents into the EPCS device.

For information about the EPCS serial configuration device family, refer to the Serial Configuration

Devices Data Sheet.

For details about using the Nios II HAL API to read and write flash memory, refer to the Nios II

Software Developer's Handbook.

For details about managing and programming the EPCS memory contents, refer to the Nios II Flash

Programmer User Guide.

For Nios II processor users, the EPCS serial flash controller core supersedes the Active Serial Memory
Interface (ASMI) device. New designs should use the EPCS serial flash controller core instead of the

ASMI core.

Related Information

« Serial Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data Sheet
« Nios II Classic Software Developer's Handbook
 Nios II Flash Programmer User Guide

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

I1sO
9001:2008
Registered

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20EPCS%20Serial%20Flash%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

5-2 Functional Description 2016.06.17

Functional Description

As shown below, the EPCS device's memory can be thought of as two separate regions:

« FPGA configuration memory—FPGA configuration data is stored in this region.

+ General-purpose memory—If the FPGA configuration data does not fill up the entire EPCS device,
any left-over space can be used for general-purpose data and system startup code.

Figure 5-1: Nios Il System Integrating an EPCS Serial Flash Controller Core

Altera FPGA
EPCS Serial
Configuration .
i o €> NislicPy
EPCS K
. (onfig |4 Controller Core S
i Memory ! e . =
. > : Boot-Loader |) S
: : 5
. General- q—1 ROM =
: Purpose ¢ || | =
. Memory | 2
| memory L‘% Other
<» On-Chip
Peripheral(s)

By virtue of the HAL generic device model for flash devices, accessing the EPCS device using the HAL
APT is the same as accessing any flash memory. The EPCS device has a special-purpose hardware
interface, so Nios II programs must read and write the EPCS memory using the provided HAL flash
drivers.

The EPCS serial flash controller core contains an on-chip memory for storing a boot-loader program.
When used in conjunction with Cyclone® and Cyclone II devices, the core requires 512 bytes of boot-
loader ROM. For Cyclone III, Cyclone IV, Stratix® II, and newer device families in the Stratix series, the
core requires 1 KByte of boot-loader ROM. The Nios II processor can be configured to boot from the
EPCS serial flash controller core. To do so, set the Nios II reset address to the base address of the EPCS
serial flash controller core. In this case, after reset the CPU first executes code from the boot-loader ROM,
which copies data from the EPCS general-purpose memory region into a RAM. Then, program control
transfers to the RAM. The Nios II IDE provides facilities to compile a program for storage in the EPCS
device, and create a programming file to program into the EPCS device.

Altera Corporation EPCS Serial Flash Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20EPCS%20Serial%20Flash%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . 53
2016.06.17 Avalon-MM Slave Interface and Registers 2

For more information, refer to the Nios II Flash Programmer User Guide.

If you program the EPCS device using the Quartus Prime Programmer, all previous content is erased. To
program the EPCS device with a combination of FPGA configuration data and Nios II program data, use
the Nios II IDE flash programmer utility.

The Altera EPCS configuration device connects to the FPGA through dedicated pins on the FPGA, not
through general-purpose I/O pins. In all Altera device families except Cyclone III and Cyclone IV, the
EPCS serial flash controller core does not create any I/O ports on the top-level Qsys system module. If the
EPCS device and the FPGA are wired together on a board for configuration using the EPCS device (in
other words, active serial configuration mode), no further connection is necessary between the EPCS
serial flash controller core and the EPCS device. When you compile the Qsys system in the Quartus Prime
software, the EPCS serial flash controller core signals are routed automatically to the device pins for the
EPCS device.

You, however, have the option not to use the dedicated pins on the FPGA (active serial configuration
mode) by turning off the respective parameters in the MegaWizard interface. When this option is turned
off or when the target device is a Cyclone III or Cyclone IV device, you have the flexibility to connect the
output pins, which are exported to the top-level design, to any EPCS devices. Perform the following tasks
in the Quartus Prime software to make the necessary pin assignments:

« On the Dual-purpose pins page (Assignments > Devices > Device and Pin Options), ensure that the
following pins are assigned to the respective values:

o Data[0] = Use as regular I/O
o Data[1l] = Use as regularr1/0O
o DCLK = Use as regular I/O
o FLASH_nCE/nCSO = Use as regular I/O
« Using the Pin Planner (Assignments > Pins), ensure that the following pins are assigned to the
respective configuration functions on the device:
e data0O_to_the_epcs_controller = DATAO
e sdo_from the_epcs_controller =DATA1,ASDO
e dclk_from_epcs_controller = DCLK
e sce_from_the_epcs_controller = FLASH_nCE

For more information about the configuration pins in Altera devices, refer to the Pin-Out Files for Altera
Devices page.
Related Information

o Nios II Flash Programmer User Guide
o Pin-Out Files for Altera Devices

Avalon-MM Slave Interface and Registers

The EPCS serial flash controller core has a single Avalon-MM slave interface that provides access to both
boot-loader code and registers that control the core. As shown in below, the first segment is dedicated to
the boot-loader code, and the next seven words are control and data registers. A Nios II CPU can read the
instruction words, starting from the core's base address as flat memory space, which enables the CPU to
reset the core's address space.

The EPCS serial flash controller core includes an interrupt signal that can be used to interrupt the CPU
when a transfer has completed.

EPCS Serial Flash Controller Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-dp.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20EPCS%20Serial%20Flash%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5-4 Configuration

Table 5-1: EPCS Serial Flash Controller Core Register Map

Offset

(32-bit Word Address)

Register Name

UG-01085
2016.06.17

Bit Description

0x00 .. OxFF Boot ROM Memory R Boot Loader Code
0x100 Read Data R

0x101 Write Data w

0x102 Status R/W

0x103 Control R/W

0x104 Reserved —

0x105 Slave Enable R/W

0x106 End of Packet R/W

Note: Altera does not publish the usage of the control and data registers. To access the EPCS device, you
must use the HAL drivers provided by Altera.

Configuration

The core must be connected to a Nios II processor. The core provides drivers for HAL-based Nios II
systems, and the precompiled boot loader code compatible with the Nios II processor.

In device families other than Cyclone III and Cyclone IV, you can use the MegaWizardTM interface to
configure the core to use general I/O pins instead of dedicated pins by turning off both parameters,
Automatically select dedicated active serial interface, if supported and Use dedicated active serial
interface.

Only one EPCS serial flash controller core can be instantiated in each FPGA design.

Software Programming Model

This section describes the software programming model for the EPCS serial flash controller core. Altera
provides HAL system library drivers that enable you to erase and write the EPCS memory using the HAL
API functions. Altera does not publish the usage of the cores registers. Therefore, you must use the HAL
drivers provided by Altera to access the EPCS device.

HAL System Library Support

Altera Corporation

The Altera-provided driver implements a HAL flash device driver that integrates into the HAL system
library for Nios II systems. Programs call the familiar HAL API functions to program the EPCS memory.
You do not need to know the details of the underlying drivers to use them.

The driver for the EPCS device is excluded when the reduced device drivers option is enabled in a BSP or
system library. To force inclusion of the EPCS drivers in a BSP with the reduced device drivers option
enabled, you can define the preprocessor symbol, ALT_USE_EPCS_FLASH, before including the header, as
follows:

#define ALT_USE_EPCS_FLASH

EPCS Serial Flash Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20EPCS%20Serial%20Flash%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . 55
2016.06.17 Software Files -

#include <altera_avalon_epcs_flash_controller._h>

The HAL API for programming flash, including C-code examples, is described in detail in the Nios II
Classic Software Developer's Handbook.

For details about managing and programming the EPCS device contents, refer to the Nios II Flash
Programmer User Guide.

Software Files

The EPCS serial flash controller core provides the following software files. These files provide low-level
access to the hardware and drivers that integrate into the Nios II HAL system library. Application
developers should not modify these files.

« altera_avalon_epcs_flash_controller.h, altera_avalon_epcs_flash_controller.c—Header and source
files that define the drivers required for integration into the HAL system library.

« epcs_commands.h, epcs_commands.c—Header and source files that directly control the EPCS device
hardware to read and write the device. These files also rely on the Altera SPI core drivers.

Document Revision History

Table 5-2: Document Revision History

I I

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2013 | v13.1.0 Removed Cyclone and Cyclone II device information in the "EPCS
Serial Flash Controller Core Register Map" table.

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |91 Revised descriptions of register fields and bits.

Updated the section on HAL System Library Support.

March 2009 v9.0.0 Updated the boot ROM memory offset for other device familes in the
EPCS Serial Flash Controller Core Register Map" table.

November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the boot rom size.

Added additional steps to perform to connect output pins in
Cyclone III devices.

For previous versions of this chapter, refer to the Quartus Handbook Archive.

EPCS Serial Flash Controller Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20EPCS%20Serial%20Flash%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

JTAG UART Core 6

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The JTAG UART core with Avalon interface implements a method to communicate serial character
streams between a host PC and a Qsys system on an Altera FPGA. In many designs, the JTAG UART core
eliminates the need for a separate RS-232 serial connection to a host PC for character I/O. The core
provides an Avalon interface that hides the complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios II processor) communicate with the core by reading and
writing control and data registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs, and provides host access via the
JTAG pins on the FPGA. The host PC can connect to the FPGA via any Altera JTAG download cable,
such as the USB-Blaster” cable. Software support for the JTAG UART core is provided by Altera. For the
Nios II processor, device drivers are provided in the hardware abstraction layer (HAL) system library,
allowing software to access the core using the ANSI C Standard Library stdio.h routines.

Nios II processor users can access the JTAG UART via the Nios II IDE or the nios2-terminal command-
line utility. For further details, refer to the Nios II Software Developer's Handbook or the Nios II IDE
online help.

For the host PC, Altera provides JTAG terminal software that manages the connection to the target,
decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is Qsys-ready and integrates easily into any Qsys-generated system.

Functional Description

The figure below shows a block diagram of the JTAG UART core and its connection to the JTAG circuitry
inside an Altera FPGA. The following sections describe the components of the core.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 .tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20JTAG%20UART%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

6-2 Avalon Slave Interface and Registers 2016.06.17

Figure 6-1: JTAG UART Core Block Diagram

JTAG Connection to Host PC

Altera FPGA

JTAG UART Core

JAG
Controller

Registers

o][> 72

Hub

Avalon-MM slave <@———1> i
interface Control Read FIFO | <t Hub

to on-chip logic
plog IRQ

Other Nodes Using JTAG interface
(For example, another JTAG UART

. Built-In Feature of Altera FPGA
[] Automatically Generated by Quartus Prime Softwawre

Avalon Slave Interface and Registers

The JTAG UART core provides an Avalon slave interface to the JTAG circuitry on an Altera FPGA. The
user-visible interface to the JTAG UART core consists of two 32-bit registers, data and control, that are
accessed through an Avalon slave port. An Avalon master, such as a Nios II processor, accesses the
registers to control the core and transfer data over the JTAG connection. The core operates on 8-bit units
of data at a time; eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can request an interrupt when read
data is available, or when the write FIFO is ready for data. For further details see the Interrupt Behavior
section.

Read and Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve bandwidth over the JTAG connection.
The FIFO depth is parameterizable to accommodate the available on-chip memory. The FIFOs can be
constructed out of memory blocks or registers, allowing you to trade off logic resources for memory
resources, if necessary.

JTAG Interface

Altera FPGAs contain built-in JTAG control circuitry between the device's JTAG pins and the logic inside
the device. The JTAG controller can connect to user-defined circuits called nodes implemented in the
FPGA. Because several nodes may need to communicate via the JTAG interface, a JTAG hub, which is a
multiplexer, is necessary. During logic synthesis and fitting, the Quartus Prime software automatically
generates the JTAG hub logic. No manual design effort is required to connect the JTAG circuitry inside
the device; the process is presented here only for clarity.

Host-Target Connection

Below you can see the connection between a host PC and an Qsys-generated system containing a JTAG
UART core.

Altera Corporation JTAG UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . . 63
2016.06.17 Configuration A

Figure 6-2: Example System Using the JTAG UART Core

Altera FPGA

JAG Nios I
e Debug Processor
Module
Diiar 1 y
: A
C - v
: " System Int Fabl
e mc |Pownload | interface | Altera JAG 5 ystem InterconnecEabric
Saver Cale |« P Download % % 2 'y 7y
Driver Cable 15 o
JTAG i) . 8
| \4 \ 4
— i -
— - e [s]
> me On-Chip
UART Memory
+* Debug Data @ Avalon-MM master pet
rrrrrr Chaacter Stream ualon MM sive part

The JTAG controller on the FPGA and the download cable driver on the host PC implement a simple
data-link layer between host and target. All JTAG nodes inside the FPGA are multiplexed through the
single JTAG connection. JTAG server software on the host PC controls and decodes the JTAG data
stream, and maintains distinct connections with nodes inside the FPGA.

The example system in the figure above contains one JTAG UART core and a Nios II processor. Both
agents communicate with the host PC over a single Altera download cable. Thanks to the JTAG server
software, each host application has an independent connection to the target. Altera provides the JTAG
server drivers and host software required to communicate with the JTAG UART core.

Systems with multiple JTAG UART cores are possible, and all cores communicate via the same JTAG

interface. To maintain coherent data streams, only one processor should communicate with each JTAG
UART core.

Configuration

The following sections describe the available configuration options.

Configuration Page

The options on this page control the hardware configuration of the JTAG UART core. The default settings
are pre-configured to behave optimally with the Altera-provided device drivers and JTAG terminal
software. Most designers should not change the default values, except for the Construct using registers
instead of memory blocks option.

JTAG UART Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

6-4 Write FIFO Settings 2016.06.17

Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host. The following settings are
available:

o Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only powers of two are allowed.
Larger values consume more on-chip memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

« IRQ Threshold—The write IRQ threshold governs how the core asserts its IRQ in response to the
FIFO emptying. As the JTAG circuitry empties data from the write FIFO, the core asserts its IRQ when
the number of characters remaining in the FIFO reaches this threshold value. For maximum
bandwidth, a processor should service the interrupt by writing more data and preventing the write
FIFO from emptying completely. A value of 8 is typically optimal. See the Interrupt Behavior section
for further details.

+ Construct using registers instead of memory blocks—Turning on this option causes the FIFO to be
constructed out of on-chip logic resources. This option is useful when memory resources are limited.
Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth of 8 (bytes) consumes roughly
88 LEs.

Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface. Settings are available to control
the depth of the FIFO and the generation of interrupts.

o Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only powers of two are allowed.
Larger values consume more on-chip memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

o IRQ Threshold—The IRQ threshold governs how the core asserts its IRQ in response to the FIFO
filling up. As the JTAG circuitry fills up the read FIFO, the core asserts its IRQ when the amount of
space remaining in the FIFO reaches this threshold value. For maximum bandwidth, a processor
should service the interrupt by reading data and preventing the read FIFO from filling up completely.
A value of 8 is typically optimal. See the Interrupt Behavior section for further details.

« Construct using registers instead of memory blocks—Turning on this option causes the FIFO to be
constructed out of logic resources. This option is useful when memory resources are limited. Each byte
consumes roughly 11 LEs, so a FIFO depth of 8 (bytes) consumes roughly 88 LEs.

Simulation Settings

At system generation time, when Qsys generates the logic for the JTAG UART core, a simulation model is
also constructed. The simulation model offers features to simplify simulation of systems using the JTAG
UART core. Changes to the simulation settings do not affect the behavior of the core in hardware; the
settings affect only functional simulation.

Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read FIFO upon simulated system
reset. The MegaWizard Interface accepts an arbitrary character string, which is later incorporated into the
test bench. After reset, this character string is pre-initialized in the read FIFO, giving the appearance that
an external JTAG terminal program is sending a character stream to the JTAG UART core.

Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create ModelSim® macros to open
interactive windows during simulation. These windows allow the user to send and receive ASCII

Altera Corporation JTAG UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Hardware Simulation Considerations 6-5

characters via a console, giving the appearance of a terminal session with the system executing in
hardware. The following options are available:

« Do not generate ModelSim aliases for interactive windows—This option does not create any
ModelSim macros for character I/O.

o Create ModelSim alias to open a window showing output as ASCII text—This option creates a
ModelSim macro to open a console window that displays output from the write FIFO. Values written
to the write FIFO via the Avalon interface are displayed in the console as ASCII characters.

o Create ModelSim alias to open an interactive stimulus/response window—This option creates a
ModelSim macro to open a console window that allows input and output interaction with the core.
Values written to the write FIFO via the Avalon interface are displayed in the console as ASCII
characters. Characters typed into the console are fed into the read FIFO, and can be read via the
Avalon interface. When this option is enabled, the simulated character input stream option is ignored.

Hardware Simulation Considerations

The simulation features were created for easy simulation of Nios II processor systems when using the
ModelSim simulator. The simulation model is implemented in the JTAG UART core's top-level HDL file.
The synthesizable HDL and the simulation HDL are implemented in the same file. Some simulation
features are implemented using translate on/off synthesis directives that make certain sections of
HDL code visible only to the synthesis tool.

For complete details about simulating the JTAG UART core in Nios II systems, refer to AN 351:
Simulating Nios II Processor Designs.

Other simulators can be used, but require user effort to create a custom simulation process. You can use
the auto-generated ModelSim scripts as references to create similar functionality for other simulators.

Note: Do not edit the simulation directives if you are using Altera’s recommended simulation
procedures. If you change the simulation directives to create a custom simulation flow, be aware
that Qsys overwrites existing files during system generation. Take precautions to ensure your
changes are not overwritten.

Software Programming Model

The following sections describe the software programming model for the JTAG UART core, including the
register map and software declarations to access the hardware. For Nios II processor users, Altera
provides HAL system library drivers that enable you to access the JTAG UART using the ANSI C
standard library functions, such as printf() and getchar().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device driver that integrates into the HAL
system library for Nios II systems. HAL users should access the JTAG UART via the familiar HAL API
and the ANSI C standard library, rather than accessing the JTAG UART registers. ioctl () requests are
defined that allow HAL users to control the hardware-dependent aspects of the JTAG UART.

Note: If your program uses the Altera-provided HAL device driver to access the JTAG UART hardware,
accessing the device registers directly will interfere with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to the JTAG UART
core's features. Nios II programs treat the JTAG UART core as a character mode device, and send and
receive data using the ANSI C standard library functions, such as getchar() and printf().

JTAG UART Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
6-6 HAL System Library Support 2016.06.17

The "Printing Characters to a JTAG UART core as stdout" example below demonstrates the simplest
possible usage, printing a message to stdout using printf(). In this example, the Qsys system contains a
JTAG UART core, and the HAL system library is configured to use this JTAG UART device for stdout.

Table 6-1: Example: Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>

int main ()

{
printf("Hello world.\n");

return 0;

}

The Transmitting characters to a JTAG UART Core example demonstrates reading characters from and
sending messages to a JTAG UART core using the C standard library. In this example, the Qsys system
contains a JTAG UART core named jtag_uart that is not necessarily configured as the stdout device. In
this case, the program treats the device like any other node in the HAL file system.

Altera Corporation JTAG UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 HAL System Library Support

Table 6-2: Example: Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>

#include <string.h>

int main ()

{

char* msg = "Detected the character 't'.\n";

FILE* fp;

char prompt = 0;

fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
if (fp)

{

while (prompt !="v')

{ // Loop until we receive a 'v'.

prompt = getc(fp); // Get a character from the JTAG UART.

if (prompt =='t)

{ // Print a message if character is 't

fwrite (msg, strlen (msg), 1, fp);

}

if (ferror(fp)) // Check if an error occurred with the file
pointer clearerr(fp); // If so, clear it.

6-7

}

fprintf(fp, "Closing the JTAG UART file handle.\n");

fclose (fp);

}

return 0;

}
In this example, the Ferror(fp) is used to check if an error occurred on the JTAG UART connection,
such as a disconnected JTAG connection. In this case, the driver detects that the JTAG connection is
disconnected, reports an error (E10), and discards data for subsequent transactions. If this error ever
occurs, the C library latches the value until you explicitly clear it with the clearerr() function.
For complete details of the HAL system library, refer to the Nios II Classic Software Developer's
Handbook.
The Nios II Embedded Design Suite (EDS) provides a number of software example designs that use the
JTAG UART core.

JTAG UART Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

6-8 Driver Options: Fast vs. Small Implementations 2016.06.17

Driver Options: Fast vs. Small Implementations

To accommodate the requirements of different types of systems, the JTAG UART driver has two variants,
a fast version and a small version. The fast behavior is used by default. Both the fast and small drivers fully
support the C standard library functions and the HAL APL

The fast driver is an interrupt-driven implementation, which allows the processor to perform other tasks
when the device is not ready to send or receive data. Because the JTAG UART data rate is slow compared
to the processor, the fast driver can provide a large performance benefit for systems that could be
performing other tasks in the interim. In addition, the fast version of the Altera Avalon JTAG UART
monitors the connection to the host. The driver discards characters if no host is connected, or if the host
is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG UART hardware before sending and
receiving each character. The performance of the small driver is poor if you are sending large amounts of
data. The small version assumes that the host is always connected, and will never discard characters.
Therefore, the small driver will hang the system if the JTAG UART hardware is ever disconnected from
the host while the program is sending or receiving data. There are two ways to enable the small footprint

driver:

+ Enable the small footprint setting for the HAL system library project. This option affects device drivers
for all devices in the system.

 Specify the preprocessor option ~-DALTERA_AVALON_JTAG_UART_SMALL. Use this option if you want the
small, polled implementation of the JTAG UART driver, but you do not want to affect the drivers for
other devices.

ioctl() Operations

The fast version of the JTAG UART driver supports the ioctl() function to allow HAL-based programs
to request device-specific operations. Specifically, you can use the ioctl () operations to control the
timeout period, and to detect whether or not a host is connected. The fast driver defines the ioct1 ()
operations shown in below.

Table 6-3: JTAG UART ioctl() Operations for the Fast Driver Only

T

TIOCSTIMEOUT | Set the timeout (in seconds) after which the driver will decide that the host is not
connected. A timeout of 0 makes the target assume that the host is always connected.
The ioctl arg parameter passed in must be a pointer to an integer.

TI10CGCON- Sets the integer arg parameter to a value that indicates whether the host is connected

NECTED and acting as a terminal (1), or not connected (0). The ioctl arg parameter passed in

must be a pointer to an integer.

For details about the ioctl () function, refer to the Nios II Classic Software Developer's Handbook.

Software Files

The JTAG UART core is accompanied by the following software files. These files define the low-level
interface to the hardware, and provide the HAL drivers. Application developers should not modify these

files.

Altera Corporation

JTAG UART Core

C] Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . .
2016.06.17 Accessing the JTAG UART Core via a Host PC 6-9

« altera_avalon_jtag_uart_regs.h—This file defines the core's register map, providing symbolic
constants to access the low-level hardware. The symbols in this file are used only by device driver
functions.

« altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files implement the HAL system library
device driver.

Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The Nios II IDE supports the JTAG
UART core, and displays character I/O in a console window. Altera also provides a command-line utility
called nios2-terminal that opens a terminal session with the JTAG UART core.

For further details, refer to the Nios II Software Developer's Handbook and Nios II IDE online help.

Register Map

Programmers using the HAL API never access the JTAG UART core directly via its registers. In general,
the register map is only useful to programmers writing a device driver for the core.

Note: The Altera-provided HAL device driver accesses the device registers directly. If you are writing a
device driver, and the HAL driver is active for the same device, your driver will conflict and fail to
operate.

The table below shows the register map for the JTAG UART core. Device drivers control and communi-
cate with the core through the two, 32-bit memory-mapped registers.

Table 6-4: JTAG UART Core Register Map

Bit Description

ter | R/
Nam | W 31 7
e

0 |data |R |RAVAIL RVA |Reserved DATA
\W% LID
1 [cont |[R |WSPACE Reserved AC | WI RI1 Reserved WE |RE
rol |W

Note: Reserved fields—Read values are undefined. Write zero.

Data Register

Embedded software accesses the read and write FIFOs via the data register. The table below describes the
function of each bit.

Table 6-5: data Register Bits

[7:0] DATA The value to transfer to/from the JTAG core. When writing, the
DATA field holds a character to be written to the write FIFO.
When reading, the DATA field holds a character read from the
read FIFO.

[15] RVAL ID R Indicates whether the DATA field is valid. If RVALI1D=1, the DATA
field is valid, otherwise DATA is undefined.

JTAG UART Core Altera Corporation

D Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

6-10 Control Register 2016.06.17
mmm
[32:16]

current read).

RAVAIL The number of characters remaining in the read FIFO (after the

A read from the data register returns the first character from the FIFO (if one is available) in the DATA
field. Reading also returns information about the number of characters remaining in the FIFO in the
RAVAIL field. A write to the data register stores the value of the DATA field in the write FIFO. If the write
FIFO is full, the character is lost.

Control Register

Embedded software controls the JTAG UART core's interrupt generation and reads status information via
the control register. The Control Register Bits table below describes the function of each bit.

Table 6-6: Control Register Bits

I

Interrupt-enable bit for read interrupts.

1 WE R/W Interrupt-enable bit for write interrupts.

8 RI R Indicates that the read interrupt is pending.

9 wi R Indicates that the write interrupt is pending.

10 AC R/C Indicates that there has been JTAG activity since the bit was

cleared. Writing 1 to AC clears it to 0.

[32:16] |WSPACE R The number of spaces available in the write FIFO.

A read from the control register returns the status of the read and write FIFOs. Writes to the register can
be used to enable/disable interrupts, or clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs, respectively. The Wl and R1 bits
indicate the status of the interrupt sources, qualified by the values of the interrupt enable bits (WE and RE).
Embedded software can examine Rl and W1 to determine the condition that generated the IRQ. See the
Interrupt Behavior section for further details.

The AC bit indicates that an application on the host PC has polled the JTAG UART core via the JTAG
interface. Once set, the AC bit remains set until it is explicitly cleared via the Avalon interface. Writing 1 to
AC clears it. Embedded software can examine the AC bit to determine if a connection exists to a host PC. If
no connection exists, the software may choose to ignore the JTAG data stream. When the host PC has no
data to transfer, it can choose to poll the JTAG UART core as infrequently as once per second. Delays
caused by other host software using the JTAG download cable could cause delays of up to 10 seconds
between polls.

Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual interrupt conditions is
pending and enabled.

Interrupt behavior is of interest to device driver programmers concerned with the bandwidth perform-
ance to the host PC. Example designs and the JTAG terminal program provided with Nios II Embedded
Design Suite (EDS) are pre-configured with optimal interrupt behavior.

Altera Corporation JTAG UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Document Revision History 6-11

The JTAG UART core has two kinds of interrupts: write interrupts and read interrupts. The WE and RE
bits in the control register enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly empty. The nearly empty
threshold, write_threshold, is specified at system generation time and cannot be changed by embedded
software. The write interrupt condition is set whenever there are write_threshold or fewer characters in
the write FIFO. It is cleared by writing characters to fill the write FIFO beyond the write_threshold.
Embedded software should only enable write interrupts after filling the write FIFO. If it has no characters
remaining to send, embedded software should disable the write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. The nearly full threshold value,
read_threshold, is specified at system generation time and cannot be changed by embedded software.
The read interrupt condition is set whenever the read FIFO has read_threshold or fewer spaces
remaining. The read interrupt condition is also set if there is at least one character in the read FIFO and
no more characters are expected. The read interrupt is cleared by reading characters from the read FIFO.

For optimum performance, the interrupt thresholds should match the interrupt response time of the
embedded software. For example, with a 10-MHz JTAG clock, a new character is provided (or consumed)
by the host PC every 1 ps. With a threshold of 8, the interrupt response time must be less than 8 us. If the
interrupt response time is too long, performance suffers. If it is too short, interrupts occurs too often.

For Nios II processor systems, read and write thresholds of 8 are an appropriate default.

Document Revision History

Table 6-7: Document Revision History

T I

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 1010 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |9 10 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

For previous versions of this chapter, refer to the Quartus Handbook Archive.

JTAG UART Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20JTAG%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UART Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The UART core with Avalon interface implements a method to communicate serial character streams
between an embedded system on an Altera FPGA and an external device. The core implements the
RS-232 protocol timing, and provides adjustable baud rate, parity, stop, and data bits. The feature set is
configurable, allowing designers to implement just the necessary functionality for a given system.

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that allows Avalon-MM
master peripherals (such as a Nios® II processor) to communicate with the core simply by reading and
writing control and data registers.

Functional Description
Figure 7-1: Block Diagram of the UART Core in a Typical System

Altera FPGA
UART Core
baud rate divisor
clock o
4’
i i RXD
dat le <
address ‘ rxdata ‘4—(sh|ft register r
data
Avalon-MM status = CTS < .
signals . o5
connected RQ 3 %8
“ o hift register - TX2 85 g
logic endofpacket txdata shi reglster[> 08
<+— ’7
dataavaileble
readyfordata
endofpacket

The core has two user-visible parts:

« The register file, which is accessed via the Avalon-MM slave port
o The RS-232 signals, RXD, TXD, CTS, and RTS

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20UART%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. UG-01085
7-2 Avalon-MM Slave Interface and Registers 2016.06.17

Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal register file. The user interface to
the UART core consists of six, 16-bit registers: control, status, rxdata, txdata, divisor, and
endofpacket. A master peripheral, such as a Nios II processor, accesses the registers to control the core
and transfer data over the serial connection.

The UART core provides an active-high interrupt request (IRQ) output that can request an interrupt
when new data has been received, or when the core is ready to transmit another character. For further
details, refer to the Interrupt Behavior section.

For more information, refer to Interval Timer Core section.

For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive logic. The UART core sends and
receives serial data via the TXD and RXD ports. The I/O buffers on most Altera FPGA families do not
comply with RS-232 voltage levels, and may be damaged if driven directly by signals from an RS-232
connector. To comply with RS-232 voltage signaling specifications, an external level-shifting buffer is
required (for example, Maxim MAX3237) between the FPGA I/O pins and the external RS-232 connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter inside the FPGA can be used
to reverse the polarity of any of the RS-232 signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register and a corresponding 7-, 8-, or
9-bit transmit shift register. Avalon-MM master peripherals write the txdata holding register via the
Avalon-MM slave port. The transmit shift register is loaded from the txdata register automatically when
a serial transmit shift operation is not currently in progress. The transmit shift register directly feeds the
TXD output. Data is shifted out to TXD LSB first.

These two registers provide double buffering. A master peripheral can write a new value into the txdata
register while the previously written character is being shifted out. The master peripheral can monitor the
transmitter's status by reading the status register's transmitter ready (TRDY), transmitter shift register
empty (tmt), and transmitter overrun error (TOE) bits.

The transmitter logic automatically inserts the correct number of start, stop, and parity bits in the serial
TXD data stream as required by the RS-232 specification.

Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and a corresponding 7-, 8-, or 9-bit
rxdata holding register. Avalon-MM master peripherals read the rxdata holding register via the Avalon-
MM slave port. The rxdata holding register is loaded from the receiver shift register automatically every
time a new character is fully received.

These two registers provide double buffering. The rxdata register can hold a previously received
character while the subsequent character is being shifted into the receiver shift register.

A master peripheral can monitor the receiver's status by reading the status register's read-ready (RRDY),
receiver-overrun error (ROE), break detect (BRK), parity error (PE), and framing error (FE) bits. The
receiver logic automatically detects the correct number of start, stop, and parity bits in the serial RXD
stream as required by the RS-232 specification. The receiver logic checks for four exceptional conditions,

Altera Corporation UART Core

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Baud Rate Generation 7-3

frame error, parity error, receive overrun error, and break, in the received data and sets corresponding
status register bits.

Baud Rate Generation

The UART core's internal baud clock is derived from the Avalon-MM clock input. The internal baud
clock is generated by a clock divider. The divisor value can come from one of the following sources:

A constant value specified at system generation time
o The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at system generation time, the
divisor value is fixed and the baud rate cannot be altered.

Instantiating the Core

Instantiating the UART in hardware creates at least two I/O ports for each UART core: An RXD input, and
a TXD output. The following sections describe the available options.

Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232 connections. The baud rate can
be configured in one of two ways:

+ Fixed rate—The baud rate is fixed at system generation time and cannot be changed via the Avalon-
MM slave port.

« Variable rate—The baud rate can vary, based on a clock divisor value held in the divisor register. A
master peripheral changes the baud rate by writing new values to the divisor register.

The baud rate is calculated based on the clock frequency provided by the Avalon-MM interface.
Changing the system clock frequency in hardware without regenerating the UART core hardware
results in incorrect signaling.

The baud rate is calculated based on the clock frequency provided by the Avalon-MM interface. Changing
the system clock frequency in hardware without regenerating the UART core hardware results in
incorrect signaling.

Baud Rate (bps) Setting

The Baud Rate setting determines the default baud rate after reset. The Baud Rate option offers standard
preset values.

The baud rate value is used to calculate an appropriate clock divisor value to implement the desired baud
rate. Baud rate and divisor values are related as shown in the follow two equations:

Divisor Formula:

divisor =int (clockfrequency ,

5
baud rate)

UART Core

Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
7-4 Baud Rate Can Be Changed By Software Setting 2016.06.17

Baud rate Formula:

baud rate = clock frequency
divisor +1

Baud Rate Can Be Changed By Software Setting

When this setting is on, the hardware includes a 16-bit divisor register at address offset 4. The divisor
register is writable, so the baud rate can be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include a divisor register. The UART hardware
implements a constant baud divisor, and the value cannot be changed after system generation. In this
case, writing to address offset 4 has no effect, and reading from address offset 4 produces an undefined
result.

Data Bits, Stop Bits, Parity

The UART core's parity, data bits and stop bits are configurable. These settings are fixed at system
generation time; they cannot be altered via the register file.

Table 7-1: Data Bits Settings

Data Bits 7,8,9 This setting determines the widths of the
txdata, rxdata, and endofpacket
registers.

Stop Bits 1,2 This setting determines whether the core

transmits 1 or 2 stop bits with every
character. The core always terminates a
receive transaction at the first stop bit, and
ignores all subsequent stop bits, regardless
of this setting.

Altera Corporation UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Synchronizer Stages 7-5
Parity None, Even, Odd This setting determines whether the UART

core transmits characters with parity
checking, and whether it expects received
characters to have parity checking.

When Parity is set to None, the transmit
logic sends data without including a parity
bit, and the receive logic presumes the
incoming data does not include a parity bit.
The PE bit in the status register is not
implemented; it always reads 0.

When Parity is set to Odd or Even, the
transmit logic computes and inserts the
required parity bit into the outgoing TXD
bitstream, and the receive logic checks the
parity bit in the incoming RXD bitstream. If
the receiver finds data with incorrect parity,
the PE bit in the status register is set to 1.
When Parity is Even, the parity bit is 0 if
the character has an even number of 1 bits;
otherwise the parity bit is 1. Similarly, when
parity is Odd, the parity bit is 0 if the
character has an odd number of 1 bits.

Synchronizer Stages

The option Synchronizer Stages allows you to specify the length of synchronization register chains. These
register chains are used when a metastable event is likely to occur and the length specified determines the
meantime before failure. The register chain length, however, affects the latency of the core.

For more information on metastability in Altera devices, refer to AN 42: Metastability in Altera Devices.
For more information on metastability analysis and synchronization register chains, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus Prime Handbook.

Streaming Data (DMA) Control
The UART core can also optionally include the end-of-packet register.

Include End-of-Packet Register
When this setting is on, the UART core includes:

o A7-,8-, or 9-bit endofpacket register at address-offset 5. The data width is determined by the Data
Bits setting.

« EOP bit in the status register.

« IEOP bit in the control register.

» endofpacket signal.

EOP detection can be used with a DMA controller, for example, to implement a UART that automatically
writes received characters to memory until a specified character is encountered in the incoming RXD
stream. The terminating (EOP) character's value is determined by the endofpacket register.

UART Core Altera Corporation

C] Send Feedback

ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

7-6 Simulation Settings 2016.06.17

When the EOP register is disabled, the UART core does not include the EOP resources. Writing to the
endofpacket register has no effect, and reading produces an undefined value.

Simulation Settings

When the UART core's logic is generated, a simulation model is also created. The simulation model offers
features to simplify and accelerate simulation of systems that use the UART core. Changes to the
simulation settings do not affect the behavior of the UART core in hardware; the settings affect only
functional simulation.

Note: For simulation, the UART core will not respond to data received on the rxdata register.

For examples of how to use the following settings to simulate Nios II systems, refer to AN 351:
Simulating Nios II Embedded Processor Designs.

Simulated RXD-Input Character Stream

You can enter a character stream that is simulated entering the RXD port upon simulated system reset. The
UART core's MegaWizard interface accepts an arbitrary character string, which is later incorporated
into the UART simulation model. After reset in reset, the string is input into the RXD port character-by-
character as the core is able to accept new data.

Prepare Interactive Windows

At system generation time, the UART core generator can create ModelSim macros that facilitate interac-
tion with the UART model during simulation. You can turn on the following options:

« Create ModelSim alias to open streaming output window to create a ModelSim macro that opens a
window to display all output from the TXD port.

+ Create ModelSim alias to open interactive stimulus window to create a ModelSim macro that opens
a window to accept stimulus for the RXD port. The window sends any characters typed in the window
to the RXD port.

Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the system, and it is seldom useful to
simulate the functional model at the true baud rate. For example, at 115,200 bps, it typically takes
thousands of clock cycles to transfer a single character. The UART simulation model has the ability to run
with a constant clock divisor of 2, allowing the simulated UART to transfer bits at half the system clock
speed, or roughly one character per 20 clock cycles. You can choose one of the following options for the
simulated transmitter baud rate:

o Accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in simulation.

o Actual (use true baud divisor)—TXD transmits at the actual baud rate, as determined by the divisor
register.

Simulation Considerations

The simulation features were created for easy simulation of Nios II processor systems when using the
ModelSim simulator. The documentation for the processor documents the suggested usage of these
features. Other usages may be possible, but will require additional user effort to create a custom
simulation process.

The simulation model is implemented in the UART core's top-level HDL file; the synthesizable HDL and
the simulation HDL are implemented in the same file. The simulation features are implemented using

Altera Corporation UART Core

C] Send Feedback

http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Software Programming Model 7-7

translate onand translate off synthesis directives that make certain sections of HDL code visible
only to the synthesis tool.

Do not edit the simulation directives if you are using Altera's recommended simulation procedures. If you
do change the simulation directives for your custom simulation flow, be aware that Qsys overwrites
existing files during system generation. Take precaution so that your changes are not overwritten.

For details about simulating the UART core in Nios II processor systems, refer to AN 351: Simulating
Nios II Processor Designs.

Software Programming Model

The following sections describe the software programming model for the UART core, including the
register map and software declarations to access the hardware. For Nios II processor users, Altera
provides hardware abstraction layer (HAL) system library drivers that enable you to access the UART
core using the ANSI C standard library functions, such as printf() and getchar().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device driver that integrates into the HAL
system library for Nios II systems. HAL users should access the UART via the familiar HAL API and the
ANSI C standard library, rather than accessing the UART registers. ioctl () requests are defined that
allow HAL users to control the hardware-dependent aspects of the UART.

Note: If your program uses the HAL device driver to access the UART hardware, accessing the device
registers directly interferes with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to the UART core's
features. Nios II programs treat the UART core as a character mode device, and send and receive data
using the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled in Qsys. Refer to Driver Options:
Fast Versus Small Implementations section.

The following code demonstrates the simplest possible usage, printing a message to stdout using
printf(). In this example, the system contains a UART core, and the HAL system library has been
configured to use this device for stdout.

Example 7-1: Example: Printing Characters to a UART Core as stdout

UART Core

#include <stdio.h>
int main Q

{
printf(""Hello world.\n");
return O;

}

The following code demonstrates reading characters from and sending messages to a UART device using
the C standard library. In this example, the system contains a UART core named uart1 that is not
necessarily configured as the stdout device. In this case, the program treats the device like any other node
in the HAL file system.

For more information about the HAL system library, refer to the Nios II Classic Software Developer's
Handbook.

Altera Corporation

C] Send Feedback

http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . UG-01085
7-8 Driver Options: Fast vs Small Implementations 2016.06.17

Example 7-2: Example: Sending and Receiving Characters

/* A simple program that recognizes the characters "t" and "v* */
#include <stdio.h>

#include <string.h>

int main)

char* msg = "Detected the character "t"._.\n";

FILE* fp;

char prompt = 0O;

fp = fopen ('/dev/uartl™, "r+"); //0Open file for reading and writing
it (fp)

while (prompt I= "v*®)

{ 7/ Loop until we receive a "v".

prompt = getc(fp); // Get a character from the UART.
if (prompt == "t")

{ // Print a message if character is "t".

fwrite (msg, strlen (msg), 1, fp);

}

3

fprintf(fp, "Closing the UART file.\n");
fclose (fp);

}

return O;

Driver Options: Fast vs Small Implementations

To accommodate the requirements of different types of systems, the UART driver provides two variants: a
fast version and a small version. The fast version is the default. Both fast and small drivers fully support
the C standard library functions and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to perform other tasks
when the device is not ready to send or receive data. Because the UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for systems that could be performing
other tasks in the interim.

The small driver is a polled implementation that waits for the UART hardware before sending and
receiving each character. There are two ways to enable the small footprint driver:

 Enable the small footprint setting for the HAL system library project. This option affects device drivers
for all devices in the system as well.

 Specify the preprocessor option ~-DALTERA_AVALON_UART_SMALL. You can use this option if you want
the small, polled implementation of the UART driver, but do not want to affect the drivers for other
devices.

Refer to the help system in the Nios II IDE for details about how to set HAL properties and preprocessor
options.
ioct() Operations

The UART driver supports the ioctl () function to allow HAL-based programs to request device-specific
operations. The table below defines operation requests that the UART driver supports.

Altera Corporation UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 e el s 7-9
2016.06.17 Limitations -

Table 7-2: UART ioctl() Operations

TIOCEXCL Locks the device for exclusive access. Further calls to open() for this device will fail until
either this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl
request. For this request to succeed there can be no other existing file descriptors for this
device. The parameter arg is ignored.

TI0CNXCL Releases a previous exclusive access lock. The parameter arg is ignored.

Additional operation requests are also optionally available for the fast driver only, as shown in Optional
UART ioctl() Operations for the Fast Driver Only Table. To enable these operations in your program,
you must set the preprocessor option -DALTERA_AVALON_UART_USE_10CTL.

Table 7-3: Optional UART ioctl() Operations for the Fast Driver Only

TIOCMGET | Returns the current configuration of the device by filling in the contents of the input termios
structure.
A pointer to this structure is supplied as the value of the parameter opt.

TIOCMSET | Sets the configuration of the device according to the values contained in the input termios
structure.
A pointer to this structure is supplied as the value of the parameter arg.

Note: The termios structure is defined by the Newlib C standard library. You can find the definition in
the file <Nios II EDS install path>/components/altera_hal/HAL/inc/sys/termios.h.

For details about the ioctl () function, refer to the Nios II Classic Software Developer's Handbook.

Limitations

The HAL driver for the UART core does not support the endofpacket register. Refer to the Register map
section for details.

Software Files

The UART core is accompanied by the following software files. These files define the low-level interface to
the hardware, and provide the HAL drivers. Application developers should not modify these files.

« altera_avalon_uart_regs.h—This file defines the core's register map, providing symbolic constants to
access the low-level hardware. The symbols in this file are used only by device driver functions.

« altera_avalon_uart.h, altera_avalon_uart.c—These files implement the UART core device driver for
the HAL system library.

Register Map

Programmers using the HAL API never access the UART core directly via its registers. In general, the
register map is only useful to programmers writing a device driver for the core.

The Altera-provided HAL device driver accesses the device registers directly. If you are writing a device
driver and the HAL driver is active for the same device, your driver will conflict and fail to operate.

The UART Core Register map table below shows the register map for the UART core. Device drivers
control and communicate with the core through the memory-mapped registers.

UART Core Altera Corporation

D Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
7-10 rxdata Register 2016.06.17

Table 7-4: UART Core Register Map

Description/Register Bits

' | Description/RegisterBits |

E e Y K) K A K A R N K
0 |rxdata RO |Reserved (2) | (@) | Receive Data
1 |txdata WO | Reserved 2) | @) | Transmit Data
2 |status () |RW |Reserved eop |cts |dcts e rrdy |trdy |tmt |toe |roe |brk |fe |pe
3 |control RW |Reserved |ieop |rts |[idct |trbk |ie |irrd |itrd |itmt |itoe |iroe |ibrk |ife |ipe

s y y

4 |divisor ®)|RW |Baud Rate Divisor
5 |endof- RW |Reserved () | (@) | End-of-Packet Value

packet (3)

Some registers and bits are optional. These registers and bits exists in hardware only if it was enabled at
system generation time. Optional registers and bits are noted in the following sections.

rxdata Register

The rxdata register holds data received via the RXD input. When a new character is fully received via the
RXD input, it is transferred into the rxdata register, and the status register's rrdy bit is set to 1. The
status register's rrdy bit is set to 0 when the rxdata register is read. If a character is transferred into the
rxdata register while the rrdy bit is already set (in other words, the previous character was not retrieved),
a receiver-overrun error occurs and the status register's roe bit is set to 1. New characters are always
transferred into the rxdata register, regardless of whether the previous character was read. Writing data
to the rxdata register has no effect.

txdata Register

Avalon-MM master peripherals write characters to be transmitted into the txdata register. Characters
should not be written to txdata until the transmitter is ready for a new character, as indicated by the TRDY
bit in the status register. The TRDY bit is set to 0 when a character is written into the txdata register. The
TRDY bit is set to 1 when the character is transferred from the txdata register into the transmitter shift
register. If a character is written to the txdata register when TRDY is 0, the result is undefined. Reading the
txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM master peripheral writes a first
character into the txdata register. The TRDY bit is set to 0, then set to 1 when the character is transferred
into the transmitter shift register. The master can then write a second character into the txdata register,
and the TRDY bit is set to 0 again. However, this time the shift register is still busy shifting out the first

1 Writing zero to the Status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
@ These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they
read zero, and writing has no effect.
) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading
returns an undefined value and writing has no effect.

Altera Corporation UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

status Register 7-11

character to the TXD output. The TRDY bit is not set to 1 until the first character is fully shifted out and the
second character is automatically transferred into the transmitter shift register.

status Register

The status register consists of individual bits that indicate particular conditions inside the UART core.
Each status bit is associated with a corresponding interrupt-enable bit in the control register. The status
register can be read at any time. Reading does not change the value of any of the bits. Writing zero to the
status register clears the DCTS, E, TOE, ROE, BRK, FE, and PE bits.

Table 7-5: status Register Bits

I A A

0w

Parity error. A parity error occurs when the received parity bit has an
unexpected (incorrect) logic level. The PE bit is set to 1 when the core
receives a character with an incorrect parity bit. The PE bit stays set to 1
until it is explicitly cleared by a write to the status register. When the
PE bit is set, reading from the rxdata register produces an undefined
value.

If the Parity hardware option is not enabled, no parity checking is
performed and the PE bit always reads 0. Refer to Data Bits, Stop, Bits,
Parity section.

RC

Framing error. A framing error occurs when the receiver fails to detect a
correct stop bit. The FE bit is set to 1 when the core receives a character
with an incorrect stop bit. The FE bit stays set to 1 until it is explicitly
cleared by a write to the status register. When the FE bit is set, reading
from the rxdata register produces an undefined value.

2 BRK

RC

Break detect. The receiver logic detects a break when the RXD pin is held
low (logic 0) continuously for longer than a full-character time (data
bits, plus start, stop, and parity bits). When a break is detected, the BRK
bit is set to 1. The BRK bit stays set to 1 until it is explicitly cleared by a
write to the status register.

3 ROE

RC

Receive overrun error. A receive-overrun error occurs when a newly
received character is transferred into the rxdata holding register before
the previous character is read (in other words, while the RRDY bit is 1).
In this case, the ROE bit is set to 1, and the previous contents of rxdata
are overwritten with the new character. The ROE bit stays set to 1 until it
is explicitly cleared by a write to the status register.

4 TOE

RC

Transmit overrun error. A transmit-overrun error occurs when a new
character is written to the txdata holding register before the previous
character is transferred into the shift register (in other words, while the
TRDY bit is 0). In this case the TOE bit is set to 1. The TOE bit stays set to 1
until it is explicitly cleared by a write to the status register.

UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
7-12 status Register 2016.06.17

I T

Transmit empty. The TMT bit indicates the transmitter shift register’s
current state. When the shift register is in the process of shifting a
character out the TXD pin, TMT is set to 0. When the shift register is idle
(in other words, a character is not being transmitted) the TMT bit is 1. An
Avalon-MM master peripheral can determine if a transmission is
completed (and received at the other end of a serial link) by checking
the TMT bit.

6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s
current state. When the txdata register is empty, it is ready for a new
character, and TRDY is 1. When the txdata register is full, TRDY is 0. An
Avalon-MM master peripheral must wait for TRDY to be 1 before writing
new data to txdata.

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding
register’s current state. When the rxdata register is empty, it is not
ready to be read and RRDY is 0. When a newly received value is
transferred into the rxdata register, RRDY is set to 1. Reading the rxdata
register clears the RRDY bit to 0. An Avalon-MM master peripheral must
wait for RRDY to equal 1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The
E bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The E bit and
its corresponding interrupt-enable bit (1E) bit in the control register
provide a convenient method to enable/disable IRQs for all error
conditions.

The E bit is set to 0 by a write operation to the status register.

10® |pCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a
logic-level transition is detected on the CTS_N input port (sampled
synchronously to the Avalon-MM clock). This bit is set by both falling
and rising transitions on CTS_N. The DCTS bit stays set to 1 until it is
explicitly cleared by a write to the status register.

11® |cTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s
instantaneous state (sampled synchronously to the Avalon-MM clock).

The CTS_N input has no effect on the transmit or receive processes. The
only visible effect of the CTS_N input is the state of the CTS and DCTS bits,
and an IRQ that can be generated when the control register’s idcts bit is
enabled.

Altera Corporation UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

control Register 7-13

I T

12@

End of packet encountered. The EOP bit is set to 1 by one of the
following events:

An EOP character is written to txdata
An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket
register. The EOP bit stays set to 1 until it is explicitly cleared by awrite
to the status register.

If the Include End-of-Packet Register hardware option is not enabled,
the EOP bit always reads 0. Refer to Streaming Data (DMA) Control
Section.

control Register

Table 7-6: control Register Bits

The control register consists of individual bits, each controlling an aspect of the UART core's operation.
The value in the control register can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit in the status register. When both
a status bit and its corresponding interrupt-enable bit are 1, the core generates an IRQ.

I R S,

0 IPE Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 I1BRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RwW Transmit break. The TRBK bit allows an Avalon-MM master peripheral
to transmit a break character over the TXD output. The TXD signal is
forced to 0 when the TRBK bit is set to 1. The TRBK bit overrides any logic
level that the transmitter logic would otherwise drive on the TXD output.
The TRBK bit interferes with any transmission in process. The Avalon-
MM master peripheral must set the TRBK bit back to 0 after an
appropriate break period elapses.

10 IDCTS RwW Enable interrupt for a change in CTS signal.

@ This bit is optional and may not exist in hardware.

UART Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

7-14 divisor Register (Optional) 2016.06.17
I ™ S
11 Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output.

An Avalon-MM master peripheral can write the RTS bit at any time. The
value of the RTS bit only affects the RTS_N output; it has no effect on the

transmitter or receiver logic. Because the RTS_N output is logic negative,
when the RTS bit is 1, a low logic-level (0) is driven on the RTS_N output.

12 IEOP RW Enable interrupt for end-of-packet condition.

divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock. The effective baud rate is
determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate Can Be Changed By Software
hardware option is not enabled, the divisor register does not exist. In this case, writing divisor has no
effect, and reading divisor returns an undefined value. For more information, refer to the Baud Rate
Options section.

endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet character for variable-length DMA
transactions. After reset, the default value is zero, which is the ASCII null character (\0). For more
information, refer to status Register bits for the description for the EOP bit.

The endofpacket register is an optional hardware feature. If the Include end-of-packet register
hardware option is not enabled, the endofpacket register does not exist. In this case, writing
endofpacket has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface, which can connect to any
master peripheral in the system, such as a Nios II processor. The master peripheral must read the status
register to determine the cause of the interrupt.

Every interrupt condition has an associated bit in the status register and an interrupt-enable bit in the
control register. When any of the interrupt conditions occur, the associated status bit is set to 1 and
remains set until it is explicitly acknowledged. The IRQ output is asserted when any of the status bits are
set while the corresponding interrupt-enable bit is 1. A master peripheral can acknowledge the IRQ by
clearing the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot assert an IRQ until a master
peripheral sets one or more of the interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status and control (interrupt-enable) bits.
Details of each interrupt condition are provided in the status bit descriptions.

) This bit is optional and may not exist in hardware.

Altera Corporation UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 7-15

Document Revision History

Table 7-7: Document Revision History

Date and Document Version Changes
Version

June 2016 2016.06.17 Removed content regarding Avalon-MM flow control.
December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.
July 2010 v10.0.0 No change from previous release.
November 2009 |91 No change from previous release.
March 2009 v9.0.0 Added description of a new parameter, Synchronizer stages.
November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 No change from previous release.
UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16550 UART Core

2016.06.17

UG-01085 O subscribe C] Send Feedback

Core Overview

The Altera 16550 UART (Universal Asynchronous Receiver/Transmitter) soft IP core with Avalon
interface is designed to be register space compatible with the de-facto standard 16550 found in the PC
industry. The core provides RS-232 Signaling interface, False start detection, Modem control signal and
registers, Receiver error detection and Break character generation/detection. The core also has an Avalon
Memory-Mapped (Avalon-MM) slave interface that allows Avalon-MM master peripherals (such as a
Nios II processor) to communicate with the core simply by reading and writing control and data registers.

The 16550 UART supports all memory types depending on the device family. Supported devices are listed

below:

e Arria®V

e Arrial0

« Cyclone V
« MAX®10

o Stratix IV

Feature Description

The 16550 Soft-UART has the following features:

o RS-232 signaling interface

o Avalon-MM slave

« Single clock

o False start detection

o Modem control signal and registers

+ Receiver error detection

o Break character generation/detection
 Supports full duplex mode by default

Table 8-1: UART Features and Configurability

“ Run Time Configurable Generate Time Configurable

FIFO/FIFO-less mode ‘ Yes ‘ Yes

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance IS0

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1 12008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%2016550%20UART%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

8-2 Unsupported Features 2016.06.17
T v T unimeContawobie | GerantcTimecomurane
FIFO Depth - Yes
5-9 bit character length Yes -
1, 1.5, 2 character stop bit Yes -
Parity enable Yes -
Even/Odd parity Yes -
Baud rate selection Yes -
Memory Block Type - Yes
Priority based interrupt with configu- Yes -

rable enable

Hardware Auto Flow Control (cts_n/ Yes Yes
rts_n signals)

DMA Extra (configurable support for Yes Yes
extra DMA sideband signal)

Stick parity/Force parity Yes -

Note: When a feature is both Generate time and Run time configurable, the feature must be enabled
during Generate time before Run time configuration can be used. Therefore, turning ON a feature
during Generate time is a prerequisite to enabling/disabling it during run time.

Unsupported Features
Unsupported Features vs PC16550D:

o Separate receive clock
« Baud clock reference output

Interface

The Soft UART will have the following signal interface, exposed using _hw.tcl through Qsys software.

Table 8-2: Clock and Reset Signal Interface

T T

clk Input Avalon clock sink

Clockrate: 24 MHz (minimum)

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Interface 8-3
e S S o S
rst_n Input Avalon reset sink

Asynchronous assert, Synchronous
deassert active low reset.

Interconnect fabric expected to
perform synchronization - UART
and interconnect is expected to be
placed in the same reset domain to
simplify system design

Table 8-3: Avalon-MM Slave

IS TS T

addr Input Avalon-MM Address bus

Highest addressable byte
address is 0x118 so a 9-bit
width is required

read Input Avalon-MM Read indication

readdata 32 Output Avalon-MM Read Data
Response from the slave

write Input Avalon-MM Write
indication

writedata 32 Input Avalon-MM Write Data

Table 8-4: Interrupt Interface

T I

intr | Output | Interrupt signal

Table 8-5: Flow Control

I I

sin Input Serial Input from external link.
sout Output Serial Output to external link.
sout_oe Output Output enable for Serial Output to external link.

sout_oe signal will be high when the UART is
transmitting and low when the UART is IDLE.

Table 8-6: Modem Control and Status

T T

cts_n | Input | Clear to Send

16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

8-4 General Architecture 2016.06.17
I T
rts_n Output Request to Send
dsr_n Input Data Set Ready
dcd_n Input Data Carrier Detect
ri_n Input Ring Indicator
dtr_n Output Data Terminal Ready
outl_n Output User Designated Outputl
out2_n Output User Designated Output2

Table 8-7: DMA Sideband Signals

T T

dma_tx_ack_n Input TX DMA acknowledge
dma_rx_ack_n Input RX DMA acknowledge
dma_tx_reg_n Output TX DMA request
dma_rx_reg_n Output RX DMA request
dma_tx_single_n Output TX DMA single request
dma_rx_single_n Output RX DMA single request

General Architecture
Figure 8-1: Soft-UART High Level Architecture

16550 UART Core
Clock and Reset ———— |
| TXFifo || TX Shifter | ——P RS-232Serial
Interface
5|Aval|0: MfM < > SR | TX Flow Control || RX Flow Control | &——P RS-232 Modem
ave Interface
Interface Interface
| RX Fifo | | RX Shifter | 4— DMA_Handshaking_tx
. 4——)p DMA_Handshaking_rx
| Clock Generator || DMA Controller |
— P IRQ

The figure above shows the high level architecture of the UART IP. Both Transmit and Receive logic have
their own dedicated control & data path. An interrupt block and clock generator block is also present to
service both transmit and receive logic.

16550 UART General Programming Flow Chart

The 16550 UART general programming flow chart is the recommended flow for setting up the UART for
error free operation.

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 16550 UART General Programming Flow Chart 8-5

Note: You are free to change this flow to fit your own usage model but the changes might cause
undefined results.

Figure 8-2: 16550 UART Configuration Flow

Setup Flow Reglster Targets
-

*j :

For more information on the register descriptions used in the flow chart, refer to the "Address Map and
Register Descriptions” section.

Related Information
Address Map and Register Descriptions on page 8-21

16550 UART Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1 : UG-01085
8-6 Configuration Parameters 2016.06.17

Configuration Parameters

The table below shows all the parameters that can be used to configure the UART. (_hw. tcl) is the
mechanism used to enforce and validate correct parameter settings.

Table 8-8: Configuration Parameters

MEM_BLOCK_TYPE

Set memory block type of
FIFO. Available memory
block depend on device
family used. FIFO_MODE
must be 1

AUTO

F1FO_MODE

1 = FIFO mode enabled
0 = FIFO mode disabled

F1FO_DEPTH

Set depth of FIFO

Values limited to 32, 64
and 128

FIFO_MODE must be 1

128

FIFO_HWFC

1 = Enabled hardware flow
control

0 = Disabled hardware
flow control

Mutually exclusive with
FIFO_SWFC

FIFO_MODE must be 1

DMA_EXTRA

1 = Additional DMA
interface enabled

0 = Additional DMA
interface disabled

DMA Support

The DMA interface (DMA_EXTRA) is disabled by default. It must be enabled in the IP to have the
additional DMA_Handshaking_tx and DMA_Handshaking_rx interfaces. DMA support is only available
when used with the HPS DMA controller. The HPS DMA controller has the required handshake signals
to control DMA data transfers with the IP through the DVA_Handshaking_tx and DMA_Handshaking_rx
interfaces. The DMA handshaking interfaces are connected to the HPS through the f2h DMA request

lines.

Altera Corporation

16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

FPGA Resource Usage 8-7

Figure 8-3: Altera 16550 UART's DMA Handshaking Interfaces Connection to Arria V/Cyclone V HPS in

Qsys

3

clk_reset

B a_16550_uart_ 0

avalon_slave

clock

reset_sink

irg_sender

RS.232 _Serial
RS.232_Modem
DMA_Handshaking tx
DMA_Handshaking_rx

=8 hps_0

h2f_mpu_events
f2h_dma_req0
f2h_dma_regl
memory

h2f_reset
r2h_sdram0_clock
f2h_sdram(_data
h2f_axi_clock
h21_axi_master
f2h_axi_clock
f2h_axi_slawe
h2f_lw_axi_clock
h2f_lw_axi_master

Reset Qutput

\Altera 16550 Compatible UART
Ayalon Memory Mapped Slave
Clock Input

Reset Input

Interrupt Sender

Conduit

Conduit

Conduit

|Condiuit
lArria ¥ fCyclone ¥ Hard Process...
[Conduit
|Conduit
|Conduit
|Conduit
[Reset Output
|Clock Input
LAX] Slave
Clock Input
LAX| Master
[Clock. Input
|AXI Slave
|Clock Input
LAX] Master

memory

[clock]
cdk_0

[clock]
[clock]

clk_0
[f2h_sdra...
cdk_0
[h2T_axi_c...
clk_0
[f2h_axi_c...
cdk_0
[h2T_lw_a...

For more information about the HPS DMA Controller handshake signals, refer to the DMA Controller
chapter in the Cyclone V Device Handbook, Volume 3.

Related Information
DMA Controller

FPGA Resource Usage

In order to optimize resource usage, in terms of register counts, the UART IP design specifically targets
MLABs to be used as FIFO storage element. The following table lists the FPGA resources required for one
UART with 128 Byte Tx and Rx FIFO.

Table 8-9: UART Resource Usage

ALMS needed 362
Total LABs 54
Combinational ALUT usage for logic 436
Combinational ALUT usage for route-throughs 17
Dedicated logic registers 311
Design implementation registers 294
Routing optimization registers 17
Global Signals 2

M10k blocks 0

16550 UART Core Altera Corporation

D Send Feedback

https://documentation.altera.com/#/00038604-AA$AA00045713
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

8-8 Timing and Fmax 2016.06.17
I
Total MLAB memory bits | 2432

Timing and Fmax

Figure 8-4: Maximum Delays on UART

Avalon Master UART IP Core External Pin

- 7ns o 8ns a 2ns 4ns

—b @D QD o@ P

The diagram above shows worst case combinatorial delays throughout the UART IP Core. These
estimates are provided by TimeQuest under the following condition:

+ Device Family: Series V and above

« Avalon Master connected to Avalon Slave port of the UART with outputs from the Avalon Master
registered

o RS-232 Serial Interface is exported to FPGA Pin

 Clocks for entire system set at 125 MHz

Based on the conditions above the UART IP has an Fmax value of 125 MHz, with the worst delay being
internal register-to-register paths.

The UART has combinatorial logic on both the Input and Output side, with system level implications on
the Input side.

The Input side combinatorial logic (with 7ns delay) goes through the Avalon address decode logic, to the
Read data output registers. It is therefore recommended that Masters connected to the UART IP register
their output signals.

The Output side combinatorial logic (with 2ns delay) goes through the RS-232 Serial Output. There
should not be any concern on the output side delays though - as it is not a single cycle path. Using the
highest clock divider value of 1, the serial output only toggles once every 16 clocks. This naturally gives a
16 clock multi-cycle path on the output side. Furthermore, divider of 1 is an unlikely system, if the UART
is clocked at 125 MHz, the resulting baud rate would be 7.81 Mbps.

Avalon-MM Slave
The Avalon-MM Slave has the following configuration:

Table 8-10: Avalon-MM Slave Configuration

I R

Bus Width 32-bit

Burst Support No burst support. Interconnect is expected to
handle burst conversion

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Read behavior 8-9
I S
Fixed read and write wait time 0 cycles
Fixed read latency 1 cycle
Fixed write latency 0 cycles
Lock support No

Note: The Avalon-MM interface is intended to be a thin, low latency layer on top of the registers.

Read behavior

Figure 8-5: Reading UART over Avalon-MM

i 0 0+ 1o 208 3 ¢ 4 ¢ 5 ¢+ 6 & 7 i 8 i 9
addr EaddrF EaddrF EaddrF '
readdata | K data2 X data3 X datad
Polling Status Reading from
RX FIFO

Reads are expected to have 2 types of behavior:

o When status registers are being polled, Reads are expected to be done in singles
« When data needs to be read out from the Rx FIFO, Reads are expected as back-to-back cycles to the

same address (these back-to-back reads are likely generated as Fixed Bursts in AXI - but translated
into INCR with length of 1 by FPGA interconnect)

Write behavior
Figure 8-6: Writing to UART over Avalon-MM

C 0 i1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9
addr EaddrF EaddrF EaddrF '
readdata K data2 X data3)X datad X
Configuration Writing to
TXFIFO

Writes to the UART are expected as singles during setup phase of any transaction and as back-to-back
writes to the same address when the Tx FIFO needs to be filled.

Overrun/Underrun Conditions

Consistent with UART implementation in PC16550D, the soft UART will not implement overrun or
underrun prevention on the Avalon-MM interface.

16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
8-10 Overrun 2016.06.17

Preventing overruns and underruns on the Avalon-MM interface by back-pressuring a pending transac-
tion may cause more harm than good as the interconnect can be held up by the far slower UART.

Overrun

On receive path, interrupts can be triggered (when enabled) when overrun occurs. In FIFO-less mode,
overrun happens when an existing character in the receive buffer is overwritten by a new character before
it can be read. In FIFO mode, overrun happens when the FIFO is full and a complete character arrives at
the receive buffer.

On transmit path, software driver is expected to know the Tx FIFO depth and not overrun the UART.

Receive Overrun Behavior

When receive overrun does happen, the Soft-UART handles it differently depending on FIFO mode. With
FIFO enabled, the newly receive data at the shift register is lost. With FIFO disabled, the newly received
data from the shift register is written onto the Receive Buffer. The existing data in the Receive Buffer is
overwritten. This is consistent with published PC16550D UART behavior.

Transmit Overrun Behavior

When the host CPU forcefully triggers a transmit Overrun, the Soft-UART handles it differently
depending on FIFO mode. With FIFO enabled, the newly written data is lost. With FIFO disabled, the
newly written data will overwrite the existing data in the Transmit Holding Register.

Underrun
No mechanisms exist to detect or prevent underrun.

On transmit path, an interrupts, when enabled, can be generated when the transmit holding register is
empty or when the transmit FIFO is below a programmed level.

On receive path, the software driver is expected to read from the UART receive buffer (FIFO-less) or the
(Rx FIFO) based on interrupts, when enabled, or status registers indicating presence of receive data (Data
Ready bit, LSR[0]). If reads to Receive Buffer Register is triggered with data ready register being zero,
undefined read data is returned.

Hardware Auto Flow-Control

Hardware based auto flow-control uses 2 signals (cts_n & rts_n) from the Modem Control/Status group.
With Hardware auto flow-control disabled, these signals will directly drive the Modem Status register
(cts_n) or be driven by the Modem Control register (rts_n).

With auto flow-control enabled, these signals perform flow-control duty with another UART at the other
end.

The cts_n input is, when active (low state), will allow the Tx FIFO to send data to the transmit buffer.
When cts_n is inactive (high state), the Tx FIFO stops sending data to the transmit buffer. cts_n is
expected to be connected to the rts_n output of the other UART.

The rts_n output will go active (low state), when the Rx FIFO is empty, signaling to the opposite UART
that it is ready for data. The rts_n output goes inactive (high state) when the Rx FIFO level is reached,
signaling to the opposite UART that the FIFO is about to go full and it should stop transmitting.

Due to the delays within the UART logic, one additional character may be transmitted after cts_n is
sampled active low. For the same reason, the Rx FIFO will accommodate up to 1 additional character after
asserting rts_n (this is allowed because Rx FIFO trigger level is at worst, two entries from being truly
full). Both are observed to prevent overflow/underflow between UARTS.

Altera Corporation 16550 UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Clock and Baud Rate Selection 8-11
Figure 8-7: Hardware Auto Flow-Control Between two UARTSs
UART 1 UART 2
——»{ Transmit Buffer sout i P Receive Buffer —
X RX
FIFO s n s n FIFO
«€4—— Flow Control ¢ = Flow Control ——P»
——» Receive Buffer Sl sout P Transmit Buffer @——
RX X
FIFO B . FIFO
@—— Flow Control D R— = Flow Control —

Clock and Baud Rate Selection

The Soft-UART supports only one clock. The same clock is used on the Avalon-MM interface and will be
used to generate the baud clock that drives the serial UART interface.

The baud rate on the serial UART interface is set using the following equation:
Baud Rate = Clock/(16 x Divisor)

The table below shows how several typical baud rates can be achieved by programming the divisor values
in Divisor Latch High and Divisor Latch Low register.

Table 8-11: UART Clock Frequency, Divider value and Baud Rate Relationship

Baud Rate Divisor for | % Error Divisor for | % Error Divisor for | % Error (baud)
16x clock (baud) 16x clock (baud) 16x clock

9,600 120 0.00% 156 0.16% 326 -0.15%

38,400 30 0.00% 39 0.16% 81 0.47%

115,200 10 0.00% 13 0.16% 27 0.47%

Software Programming Model

Overview

The following describes the programming model for the Altera compatible 16550 Soft-UART.

Supported Features

For the following features, the 16550 Soft-UART HAL driver can be configurable in run time or generate
time. For run-time configuration, users can use “altera_16550_uart_config” API . Generate time is during

16550 UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
8-12 Unsupported Features 2016.06.17

Qsys generation, that is to say once FIFO Depth is selected the depth for the FIFO can’t be change
anymore.

Table 8-12: Supported Features

e | hnmme | Geemerme

FIFO/ FIFO-less mode Yes Yes
FIFO Depth - Yes
Programmable Tx/Rx FIFO Yes -
Threshold

5-9 bit character length Yes -
1, 1.5, 2 character stop bit Yes -
Parity enable Yes -
Even/Odd parity Yes -
Stick parity Yes -
Baud rate selection Yes -
Priority based interrupt with configu- Yes -
rable enable

Hardware Auto Flow Control Yes Yes

Unsupported Features
The 16550 UART driver does not support Software flow control.

Configuration
The figure below shows the Qsys setup on the 16550 Soft-UART's FIFO Depth

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 8.13
2016.06.17 16550 UART API 3

Figure 8-8: Qsys Setting to Configure FIFO Depth

E¥Y Aitera 16550 Compatible UART - a_16550 uart 0 =@pg-slscfl

“ Altera 16550 Compatible UART

Megecors AllEra 16550 _uan
[~ Block Diagram | : [~ Parameters ||¥
[[] Showe signals Mernary Block type: AITO |-
a1 6550_uar_0 FIFC: Enabled |w
;| Depth of FIFO: 128 |v

prutonsive _______Lioon merrum e OSSN0y Harcware Flow Control: |32 :IZI

= | Acditional oma ntertace: o4 E

ML S :

ﬁg!z_seriaj F—

PR L I I

aﬂ_ﬂﬂnd!hﬂing_\x F—

aﬂ_ﬂﬂnd!hﬂing_m candun

akera 16550 wan

16550 UART API

Public APIs

Table 8-13: altera_16550_uart_open

Prototype: altera_16550_uart_dev * altera_16550_uart_
open(const char* name);

Include: <altera_16550_ uart.h>

Parameters: name—the 16550 UART device name to open.

Returns: Pointer to 16550 UART or NULL if fail to open

Description Open 16550 UART device.

Table 8-14: altera_16550 uart_close

Prototype: void alt_16550_uart_close (const char* name)
Include: <altera_16550_ uart.h>

Parameters: name—the 16550 UART device name to close.
Returns: None

Description: Closes 16550 UART device.

Table 8-15: alt_16550 uart_read

Prototype: alt_u32 altera_16550_uart_read(altera_16550_uart_
dev* dev, const char * ptr, alt_ul6 len, alt_ul6 flags);
Include: <altera_16550 uart.h>
16550 UART Core

Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

8-14 Private APIs 2016.06.17

Parameters: dev - The UART device
ptr — destination address
len - maximum length of the data

flags — for indicating blocking/non-blocking access
for single/multi threaded

Returns: Number of bytes read

Description: Read data to the UART receiver buffer. UART
required to be in a known settings prior executing
this function

Table 8-16: alt_16550_uart_write

Prototype: alt_u32 alt_16550_uart_write(altera_16550_uart_
dev* dev, const char * ptr, alt_ul6 flags, int len);

Include: <altera_16550 uart.h>

Parameters: dev - The UART device

ptr — source address
len - maximum length of the data

flags - for indicating blocking/non-blocking access
for single/multi threaded

Returns: Number of bytes written

Description: Writes data to the UART transmitter buffer. UART
required to be in a known settings prior executing
this function

Table 8-17: alt_16550_uart_config

Prototype: alt_u32 alt_16550_uart_config(altera_16550_uart_
dev* dev, UartConfig *config);

Include: dev - The UART device

Parameters: config - UART configuration structure to configure
UART (refer to UART device structure

Returns: Return 0 for success otherwise fail

Description: Configure UART per user input before initiating

read or Write

Private APIs

Table 8-18: alt_16550_irq

Prototype: static void altera_16550_uart_irq (void* context)

Altera Corporation 16550 UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 UART Device Structure 8-15
Include: <altera_16550_uart.h>
Parameters: context — device of the UART
Returns: none
Description: Interrupt handler to process UART interrupts to

process receiver/transmit interrupts.

Table 8-19: alt_16550_uart_rxirq

Prototype: static void altera_16550_uart_rxirq (altera_16550_
uart_dev* dev, alt_u32

Include: <altera_16550_uart.h>

Parameters: context — device of the UART

Returns: none

Description: Process a receive interrupt. It transfers the incoming

character into the receiver circular buffer, and sets
the appropriate flags to indicate that there is data
ready to be processed.

Table 8-20: alt_16550_uart_txirq

Prototype: static void altera_16550_uart_txirq (altera_16550_
uart_dev* dev, alt_u32 status

Include: <altera_16550_uart.h>

Parameters: context — device of the UART

Returns: none

Description: Process a transmit interrupt. It transfers data from
the transmit buffer to the device, and sets the
appropriate flags to indicate that there is data ready
to be processed.

UART Device Structure

Example 8-1: UART Device Structure 1

typedef enum stopbit { STOPB_1 = 0,STOPB_2 } StopBit;
typedef enum paritybit { ODD_PARITY = 0, EVEN_PARITY, MARK_PARITY,

SPACE_PARITY, NO_PARITY } ParityBit;

typedef enum databit { CS 5 =0, CS 6, CS_7, CS_8, CS_ 9 = 256} DataBit;

typedef enum baud
{
BR9600 = B9600,

BR19200 = B19200,
BR38400 = B38400,
BR57600 = B57600,
BR115200 = B115200
} Baud;

typedef enum rx_Fifo_level_e { RXONECHAR = 0, RXQUARTER, RXHALF, RXFULL }

Rx_FifoLvl;

16550 UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
8-16 UART Device Structure 2016.06.17

typedef enum tx_Fifo_level_e { TXEMPTY = 0, TXTWOCHAR, TXQUARTER, TXHALF }
Tx_FifoLvl;
typedef struct uart_config_s

StopBit stop_bit;
ParityBit parity bit;
DataBit data bit;

Baud baudrate;

alt_u32 fifo_mode;
Rx_FifoLvl rx_fifo_level;
Tx_FifoLvl tx_Ffifo_ level;
alt_u32 hwfc;

} UartConfig;

Example 8-2: UART Device Structure 2

typedef struct altera_16550 uart_state_ s

alt_dev dev;

void* base; /* The base address of the device */

alt u32 clock;

alt_u32 hwfifomode;

alt_u32 ctrl; /* Shadow value of the LSR register */

volatile alt_u32 rx_start; /* Start of the pending receive data */
volatile alt_u32 rx_end; /* End of the pending receive data */

volatile alt _u32 tx_start; /* Start of the pending transmit data */
volatile alt_u32 tx_end; /* End of the pending transmit data */

alt_u32 freq; /* Current clock freq rate */

UartConfig config; /* Uart setting */

#ifdef ALTERA_16550_ UART_USE_IOCTL

struct termios termios;

#endif

alt_u32 flags; /* Configuration flags */

ALT_FLAG_GRP (events) /* Event flags used for

* foreground/background in mult-threaded

* mode */

ALT_SEM (read_lock) /* Semaphore used to control access to the

* read buffer in multi-threaded mode */

ALT_SEM (write_lock) /* Semaphore used to control access to the

* write buffer in multi-threaded mode */

volatile wchar_t rx_buf[ALT_16550 UART_BUF_LEN]; /* The receive buffer */
volatile wchar_t tx_buf[ALT_16550 UART_BUF_LEN]; /* The transmit buffer */
line_status_reg line_status; /* line register status for the current read
byte data of RBR or data at the top of FIFO*/

alt_u8 error_ignore; /* received data will be discarded

for the current read byte data of RBR or data at the top of FIFO if pe, fe
and bi errors detected after error_ignore is set to "0" */

} altera_16550_uart_state;

Altera Corporation 16550 UART Core

[;:] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Driver Examples 8-17

Driver Examples

Below is a simple test program to verify that the Altera 16550 UART driver support is functional.

The test reads, validates, and writes a modified baud rate, data bits, stop bits, parity bits to the UART
before attempting to write a character stream to it from UARTO to UART1 and vice verse (ping pong
test). This also tests the FIFO and FIFO-less mode as well as the HW flow control to ensure the IP is
functioning for FIFO and HWEC.

Prerequisites needed before running test:

o Aninstance of UART named "uart0" and another instance UART named "uart1".
o Both UARTS need to be connected in loopback in Quartus.

Additional coverage:

« Non-blocking UART support
o UART HAL driver
o HAL open/write support

The test will print "PASS: .. ." from the UART to indicate success.

Example 8-3: Verifying Altera 16550 UART Driver Support functionality

#include <stdio.h>

#include <stdlib_h>

#include <sys/ioctl_h>
#include <sys/termios.h>
#include <fcntl._h>

#include <string.h>

#include <unistd.h>

#include <sys/time.h>
#include <time.h>

#include "system._h"

#include "altera_16550 uart.h™
#include "altera_ 16550 uart_regs.h"

#define ERROR -1
#define SUCCESS 0
#define MOCK_UART
#define BUFSIZE 512

char TXMessage[BUFSIZE] "Hello World";

char RXMessage[BUFSIZE] ;

int UARTDefaultConfig(UartConfig *Config)

{
Config->stop_bit = STOPB_1;
Config->parity_bit = NO_PARITY;
Config->data_bit = CS_8;
Config->baudrate = BR115200;
Config->fifo_mode = 0;
Config->hwfc = 0;
Config->rx_Fifo_level= RXFULL;
Config->tx_Fifo_level= TXEMPTY;
return O;

}

int UARTBaudRateTest()

{
UartConfig *UARTO_Config = malloc(1*sizeof(UartConfig));
UartConfig *UART1_Config = malloc(l*sizeof(UartConfig));
int i=0, j=0, direction=0, Match=0;

16550 UART Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
8-18 Driver Examples

2016.06.17
const int nBaud = 5;
int BaudRateCoverage[]= {BR9600, BR19200, BR38400, BR57600, BR115200};
altera_ 16550 uart state* uart O;
altera_16550_uart_state* uart_1;
printf(” UART Baud Rate Test Starts Here
\n"™);
uart_0 = altera_ 16550 _uart_open ("/dev/a_16550 uart_0");
uart_1 = altera_16550_uart_open ("/dev/a_16550 uart_1'");
for (direction=0; direction<2; direction++)
{
for (i=0; i<nBaud; i++)

UARTDefaultConfig(UARTO_Config);
UARTDefaultConfig(UART1_Config);
UARTO_Config->baudrate=BaudRateCoverage[i];
UART1_Config->baudrate=BaudRateCoverage[i];
printf("'Testing Baud Rate: %d\n", UARTO_Config->baudrate);
if(ERROR == alt_16550_uart_config (uart_0, UARTO_Config)) return

ERROR;
if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return
ERROR;
switch(direction)
{
case O:
printf(""Ping Pong Baud Rate Test: UART#0 to UART#1\n');
for(J=0; j<strlen(TXMessage); j++)
{
altera_16550_uart_write(uart_0O, &TXMessage[j], 1, 0);
usleep(1000);
if(ERROR== altera_16550 uart_read(uart_1, RXMessage, 1,
0)) return ERROR;
iT(TXMessage[j]==RXMessage[0]) Match=1; else return
ERROR;
printf('Sent:"%c", Received:"%c", Match:%d\n",
TXMessage[Jj]., RXMessage[0], Match);
break;
case 1:
printf("'Ping Pong Baud Rate Test: UART#1 to UART#0\n');
for(J=0; j<strlen(TXMessage); j++)
{
altera_16550_uart_write(uart_1, &TXMessage[j], 1, 0);
usleep(1000);
iT(ERROR== altera_16550 uart_read(uart_0O, RXMessage, 1,
0)) return ERROR;
if(TXMessage[J]==RXMessage[0]) Match=1; else return
ERROR;
printf(*'Sent:"%c", Received:"%c", Match:%d\n",
TXMessage[j]., RXMessage[0], Match);
}
break;
default:
break;
}
usleep(1000);
3]
free(UARTO_Config);
free(UART1_Config);
return SUCCESS;
}
int UARTLineControlTest()
{
Altera Corporation 16550 UART Core

[;:] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Driver Examples 8-19

UartConfig *UARTO_Config
UartConfig *UART1_Config

malloc(1*sizeof(UartConfig));
malloc(1*sizeof(UartConfig));

int x=0, y=0, z=0, Match=0;

const int nDataBit = 2, nParityBit=3, nStopBit=2;

int DataBitCoverage[]= { /7*CS_5, CS_6,*/ CS_7, CS_8};

int ParityBitCoverage[]= {ODD_PARITY, EVEN_PARITY, NO_PARITY};
int StopBitCoverage[]= {STOPB_1, STOPB 2};
altera_16550_uart_state* uart_O;

altera_16550_uart_state* uart_1;

printf(" UART Line Control Test Starts
Here \n'") ;
uart_0 altera_16550_uart_open (*'/dev/a_16550_uart_0");

uart_1 = altera_16550_uart_open (*"/dev/a_16550_uart_1");

for(x=0; x<nStopBit; x++)
for (y=0; y<nParityBit; y++)
{
for (z=0; z<nDataBit; z++)

UARTDefaultConfig(UARTO_Config);
UARTDefaultConfig(UART1_Config);
UARTO_Config->stop_bit=StopBitCoverage[x];
UART1_Config->stop_bit=StopBitCoverage[x];
UARTO_Config->parity_bit=ParityBitCoverage[y]:
UART1_Config->parity_bit=ParityBitCoverage[y]:
UARTO_Config->data_bit=DataBitCoverage[z];
UART1_Config->data_bit=DataBitCoverage[z];

printf(""Testing : Stop Bit=%d, Data Bit=%d, Parity Bit=%d
\n"", UARTO_Config->stop_bit, UARTO_Config->data_bit, UARTO_Config-
>parity bit);

iT(ERROR == alt_16550_uart_config (uart_0, UARTO_Config))
return ERROR;

if(ERROR == alt_16550_uart_config (uart_1, UART1_Config))
return ERROR;

altera_16550_uart_write(uart_0O, &TXMessage[0O], 1, 0);

usleep(1000);

if(ERROR== altera_16550 uart_read(uart_1, RXMessage, 1, 0))
return ERROR;

iT(TXMessage[0]==RXMessage[0]) Match=1; else

printf('Sent:"%c", Received:"%c", Match:%d\n",
TXMessage[0], RXMessage[0], Match);
return ERROR;

}
printf("'Sent:"%c", Received:"%c", Match:%d\n'", TXMessage[0O],
RXMessage[0], Match);

}

b
free(UARTO_Config);
free(UART1_Config);
return SUCCESS;

}

int UARTFIFOModeTest()
{

UartConfig *UARTO_Config
UartConfig *UART1_Config

malloc(1*sizeof(UartConfig));
malloc(1*sizeof(UartConfig));

int 1=0, direction=0, CharCounter=0, Match=0;
const int nBaud = 2;
int BaudRateCoverage[]= {BR115200, /*BR19200, BR38400, BR57600,*/ BR9600};

16550 UART Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
8-20 Driver Examples 2016.06.17

altera_16550_uart_state* uart_O;
altera_16550_uart_state* uart_1;

printf(" UART FIFO Mode Test Starts Here
\nn) ;
uart_0 altera_16550_uart_open (*'/dev/a_16550_uart_0");

uart 1 altera_16550_uart_open (*'/dev/a_16550_uart_1");

for (direction=0; direction<2; direction++)
for (i=0; i<nBaud; i++)

UARTDefaul tConfig(UARTO_Config);
UARTDefaultConfig(UART1_Config);
UARTO_Config->baudrate=BaudRateCoverage[i];
UART1_Config->baudrate=BaudRateCoverage[i];
UARTO_Config->fifo_mode 1;
UART1_Config->fifo_mode 1;

UARTO_Config->hwfc = 0;

UART1_Config->hwfc = 0;
if(ERROR == alt_16550_uart_config (uart_0, UARTO_Config)) return

ERROR;

iT(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return
ERROR;

printf(""Testing Baud Rate: %d\n', UARTO_Config->baudrate);

switch(direction)
{
case O:
printf("'Ping Pong FIFO Test: UART#0 to UART#1\n'");
CharCounter=altera_16550 uart_write(uart_0, &TXMessage,
strlen(TXMessage), 0);
//usleep(50000);
iT(ERROR== altera_16550 uart_read(uart_1, RXMessage,
strlen(TXMessage), 0)) return ERROR;
if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
printf("'Sent:"%s" CharCount:%d, Received:"%s" CharCount:%d,
Match:%d\n", TXMessage, CharCounter, RXMessage, strlen(RXMessage), Match);
if(Match==0) return ERROR;
break;
case 1:
printf("'Ping Pong FIFO Test: UART#1 to UART#0\n');
CharCounter=altera_16550 uart_write(uart_1, &TXMessage,
strlen(TXMessage), 0);
//usleep(50000);
iT(ERROR== altera_16550 uart_read(uart_0, RXMessage,
strlen(TXMessage), 0)) return ERROR;
if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
printf("'Sent:"%s" CharCount:%d, Received:"%s" CharCount:%d,
Match:%d\n", TXMessage, CharCounter, RXMessage, strlen(RXMessage), Match);
if(Match==0) return ERROR;
break;
default:
break;

}

//usleep(100000);
b]
free(UARTO_Config);

free(UART1_Config);
return SUCCESS;

}
int mainQ)

int result=0;

Altera Corporation 16550 UART Core

[;:] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Address Map and Register Descriptions

result = UARTBaudRateTest();
if(result==ERROR)

printfF(""UARTBaudRateTest FAILED\n"");
return ERROR;

}

result = UARTLineControlTest();
if(result==ERROR)

printfF("UARTLineControlTest FAILED\n");

return ERROR;
¥

result = UARTFIFOModeTest();
if(result==ERROR)

printfF(""UARTFIFOModeTest FAILED\n™);
return ERROR;

}
printf(""\n\nALL TESTS PASS\n\n'");
return O;

Table 8-21: altr_uart_csr Address Map

I T e ey

Address Map and Register Descriptions 8-21

rbr_thr_dll 0x00000000 | Rx Buffer, Tx Holding, and
Divisor Latch Low

ier_dlh 0x4 32 RW 0x00000000 | Interrupt Enable and Divisor
Latch High

iir 0x8 32 R 0x00000001 | Interrupt Identity Register
(when read)

fcr 0x8 32 W 0x00000000 | FIFO Control (when written)

lcr 0xC 32 RwW 0x00000000 | Line Control Register

mcr 0x10 32 RW 0x00000000 | Modem Control Register

Isr 0x14 32 R 0x00000060 | Line Status Register

msr 0x18 32 R 0x00000000 | Modem Status Register

scr 0x1C 32 RW 0x00000000 | Scratchpad Register

Note: RC-Read to Clear

16550 UART Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
8-22 rbr_thr_dll 2016.06.17

rbr_thr_dll

Identifier Title Offset Access Reset Description
Value
0x0

rbr_thr_dll Rx Buffer, 0x000000 | This is a multi-function register. This

Tx Holding, 0 register holds receives and transmit
and Divisor data and controls the least-signficant 8
Latch Low bits of the baud rate divisor.
Bit Fields
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rbr_thr_dll

Table 8-22: rbr_thr_dll Fields

[31:8] | - |Reserved | |

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

[70

rbr thr_dll

rbr_thr_dll 8-23

Receive Buffer Register:

This register contains the data byte received on
the serial input port (sin). The data in this
register is valid only if the Data Ready (LSR[0] is
set to 1). If FIFOs are disabled (FCR[O0] is cleared
to 0) the data in the RBR must be read before the
next data arrives, otherwise it will be
overwritten, resulting in an overrun error. If
FIFOs are enabled (FCR[0] set to 1) this register
accesses the head of the receive FIFO. If the
receive FIFO is full, and this register is not read
before the next data character arrives, then the
data already in the FIFO will be preserved but
any incoming data will be lost. An overrun error
will also occur.

Transmit Holding Register:

This register contains data to be transmitted on
the serial output port (sout). Data should only be
written to the THR when the THR Empty bit
(LSR[5] is set to 1). If FIFOs are disabled
(FCRIO] is set to 0) and THRE is set to 1, writing
a single character to the THR clears the THRE.
Any additional writes to the THR before the
THRE is set again causes the THR data to be
overwritten. If FIFO's are enabled (FCR[0] is set
to 1) and THRE is set, the FIFO can be filled up
to a pre-configured depth (FIFO_DEPTH). Any
attempt to write data when the FIFO is full
results in the write data being lost.

Divisor Latch Low:

This register makes up the lower 8-bits of a 16-
bit, Read/write, Divisor Latch register that
contains the baud rate divisor for the UART.
This register may only be accessed when the
DLAB bit (LCR[7] is set to 1). The output baud
rate is equal to the system clock (clk) frequency
divided by sixteen times the value of the baud
rate divisor, as follows:

baud rate = (system clock freq) / (16 * divisor)

Note: With the Divisor Latch Registers (DLL
and DLH) set to zero, the baud clock is
disabled and no serial communications
will occur. Also, once the DLL is set, at
least 8 system clock cycles should be
allowed to pass before transmitting or
receiving data.

| 0x00

16550 UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

8-24 ier_dlh 2016.06.17
ier_dlh
Identifier Title Offset Reset Description
Value
ter_dlh Interrupt 0x000000 | The jer_dih (Interrupt Enable
El}able and 00 Register) may only be accessed when
Divisor ‘ the DLAB bit [7] of the LCR Register is
Latch High set to 0. Allows control of the Interrupt

Enables for transmit and receive
functions.This is a multi-function
register. This register enables/disables
receive and transmit interrupts and
also controls the most-significant 8-
bits of the baud rate divisor.

The Divisor Latch High Register is
accessed when the DLAB bit (LCR[7]
is set to 1). Bits[7:0] contain the high
order 8-bits of the baud rate divisor.
The output baud rate is equal to the
system clock (clk) frequency divided
by sixteen times the value of the baud
rate divisor, as follows:

baud rate = (system clock freq) / (16 *
divisor)

Note: With the Divisor Latch
Registers (DLL and DLH)
set to zero, the baud clock is
disabled and no serial
communications will occur.
Also, once the DLL is set, at
least 8 system clock cycles
should be allowed to pass
before transmitting or
receiving data.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dlh7_4 edssi_ elsi_ etbei_ erbfi_dlh0
dhl3 dhl2 dlh1

Table 8-23:ier_dlh Fields

[31:8] |— |Reserved | |

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 ier_dlh

[7 4] DLH([7:4] (d1h7 4)

8-25

Divisor Latch High Register:
Bit 4, 5, 6 and 7 of DLH value.

[3] DLH|3] and Enable

Modem Status Interrupt
(edssi_dhl3) Bit 3 of DLH value.

o Interrupt Enable Register:

« Divisor Latch High Register: RW 0x0

This is used to enable/disable the generation of
Modem Status Interrupts. This is the fourth
highest priority interrupt.

[2] DLH|2] and Enable

Receiver Line Status
(elsi_dhl2) Bit 2 of DLH value.

« Interrupt Enable Register:

« Divisor Latch High Register: RW 0x0

This is used to enable/disable the generation of
Receiver Line Status Interrupt. This is the
highest priority interrupt

[1] DLH[1] and Transmit

Data Interrupt Control
(etbei_dlhl) Bit 1 of DLH value.

« Interrupt Enable Register:

« Divisor Latch High Register: RW 0x0

Enable Transmit Holding Register Empty
Interrupt. This is used to enable/disable the
generation of Transmitter Holding Register
Empty Interrupt. This is the third highest
priority interrupt.

[0] DLH][0] and Receive RW 0x0

Data Interrupt Enable
(erbfi_dIho) Bit 0 of DLH value.

o Interrupt Enable Register:

« Divisor Latch High Register:

This is used to enable/disable the generation of
the Receive Data Available Interrupt and the
Character Timeout Interrupt (if FIFO's enabled).
These are the second highest priority interrupts.

16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2t ir 2016.06.17
iir
Identifier Title Offset Access Reset Description
Value
iir Interrupt 0x000000 | Returns interrupt identification and

Identity 01 FIFO enable/disable when read.
Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fifose - id

Table 8-24:iir Fields

[31:8] Reserved

[7:6] FIFOs Enabled (fifose) |The FIFOs Enabled is used to indicate whether the R 0x0
FIFO's are enabled or disabled.

[5:4] - Reserved R 0x0

[3:0] Interrupt ID (id) The Interrupt ID indicates the highest priority R 0x1
pending interrupt.

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 fer

Identifier Title Offset Reset Description
Value

8-27

FIFO 0x000000 | Controls FIFO operation when
Control 00 written.
31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rt - dmam | xfifor rfifor fifoe

Table 8-25: fcr Fields

[31:8] Reserved
(7:6] Rx Trigger Level (rt) This register is configured to implement FIFOs w 0x0
RxTrigger (or RT). This is used to select the trigger
level in the receiver FIFO at which the Received
Data Available Interrupt will be generated. In auto
flow control mode it is used to determine when the
rts_n signal will be de-asserted
[5:4] - Reserved R 0x0
16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8-28

UG-01085
2016.06.17

" [3] |DMA Mode (dmam) | (dmam)

Th1s determines the DMA signalling mode used for
the uart_dma_tx_reqg_n and uart_dma_rx_req_n
output signals when additional DMA handshaking
signals are not selected. DM A mode 0 supports
single DMA data transfers at a time. In mode 0, the
uart_dma_tx_req_n signal goes active low under
the following conditions:

o When the Transmitter Holding Register is
empty in non-FIFO mode.

« When the transmitter FIFO is empty in FIFO
mode.

It goes inactive under the following conditions:

« When a single character has been written into
the Transmitter Holding Register or transmitter
FIFO.

« When the transmitter FIFO is above the
threshold.

DMA mode 1 supports multi-DMA data transfers,
where multiple transfers are made continuously
until the receiver FIFO has been emptied or the
transmit FIFO has been filled. In mode 1 the uart_
dma_tx_req_n signal is asserted under the following
condition:

« When the transmitter FIFO is empty.

[2] Tx FIFO Reset (xFifor)

This bit resets the control portion of the transmit
FIFO and treats the FIFO as empty. Note that this
bit is 'self-clearing' and it is not necessary to clear
this bit. Please allow for 8 clock cycles to pass after
changing this register bit before reading from RBR
or writing to THR.

w 0x0

[1] Rx FIFO Reset (rfifor)

Resets the control portion of the receive FIFO and
treats the FIFO as empty. Note that this bit is self-
clearing' and it is not necessary to clear this bit.
Allow for 8 clock cycles to pass after changing this
register bit before reading from RBR or writing to
THR.

\Y 0x0

[0] FIFO Enable (fifoe)

This bit enables/disables the transmit (Tx) and
receive (Rx) FIFO's. Whenever the value of this bit
is changed both the Tx and Rx controller portion of
FIFO's will be reset.

Any existing data in both Tx and Rx FIFO will be
lost when this bit is changed. Please allow for 8
clock cycles to pass after changing this register bit
before reading from RBR or writing to THR.

w 0x0

Altera Corporation

16550 UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 ler

Title Reset Description
Value

8-29

Line Control 0xC 0x000000 | Formats serial data.
Register 00
Bit Fields
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dls9 dlab break sp eps pen stop dls

Table 8-26: Icr Fields Description

[31:9] Reserved

(8] Data Length Select Issue 1'b1 to LCR[8] and 2'b00 to LCR[1:0] to turn RW 0x0
(d1s9) on 9 data bits per character that the peripheral will
transmit and receive.

(7] Divisor Latch Access Bit | Thyis is used to enable reading and writing of the RW 0x0

(dlab) Divisor Latch register (DLL and DLH) to set the
baud rate of the UART. This bit must be cleared
after initial baud rate setup in order to access other
registers.

[6] Break Control Bit This is used to cause a break condition to be RW 0x0
(break) transmitted to the receiving device. If set to one the
serial output is forced to the spacing (logic 0) state
until the Break bit is cleared.

[5] Stick Parity (sp) The SP bit works in conjunction with the EPS and RW 0x0
PEN bits. When odd parity is selected (EPS = 0), the
PARITY bit is transmitted and checked as set.
When even parity is selected (EPS = 1), the PARITY
bit is transmitted and checked as cleared.

[4] Even Parity Select (eps) RW 0x0

This is used to select between even and odd parity,
when parity is enabled (PEN set to one). If set to
one, an even number of logic '1's is transmitted or
checked. If set to zero, an odd number of logic '1's is
transmitted or checked.

(3] Parity Enable (pen) This bit is used to enable and disable parity RW 0x0
generation and detection in a transmitted and
received data character.

16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8-30

UG-01085
2016.06.17

Stop Bits (stop)

Number of stop bits. This is used to select the
number of stop bits per character that the
peripheral will transmit and receive. Note that
regardless of the number of stop bits selected the
receiver will only check the first stop bit.

[1:0]

Data Length Select (dlIs)

Selects the number of data bits per character that
the peripheral will transmit and receive.

+ 0-5 data bits per character
 1-6 data bits per character
o 2-7 data bits per character
3-8 data bits per character

RW 0x0

Altera Corporation

16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 mer el
Title Reset Description
Value

Modem 0x10 0x000000 | Reports various operations of the

Control 00 modem signals.

Register

Bit Fields
31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
afce | loopba | out2 outl rts dtr
ck

Table 8-27: mcr Fields Descriptions

[31:6] Reserved

(5] Hardware Auto Flow When FIFOs are enabled (FCR[0]), the Auto Flow RW 0x0
Control Enable (afce) | Control enable bits are active. This enabled UART
to dynamically assert and deassert rts_n based on
Receive FIFO trigger level

[4] LoopBack Bit This is used to put the UART into a diagnostic RW 0x0
(Toopback) mode for test purposes. If UART mode is NOT
active, bit [6] of the modem control register MCR is
set to zero, data on the sout line is held high, while
serial data output is looped back to the sin line,
internally. In this mode all the interrupts are fully
functional. Also, in loopback mode, the modem
control inputs (dsr_n, cts_n, ri_n, dcd_n) are
disconnected and the modem control outputs (dtr_
n, rts_n, outl_n, out2_n) are loopedback to the
inputs, internally.

(3] Out2 (out2) This is used to directly control the user-designated RW 0x0
out2_n output. The value written to this location is
inverted and driven out on out2_n

(2] Outl (out1) This is used to directly control the user-designated RW 0x0
outl_n output. The value written to this location is
inverted and driven out on outl_n pin.
16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8-32

UG-01085
2016.06.17

Request 'Request to Send (rts) | (rts)

ThlS is used to directly control the Request to Send
(rts_n) output. The Request to Send (rts_n)
output is used to inform the modem or data set that
the UART is ready to exchange data. When Auto
RTS Flow Control is not enabled (MCR[5] set to
zero), the rts_n signal is set low by programming
this register to a high. If Auto Flow Control is active
(MCR[5] set to 1) and FIFO's enable (FCR[0] set to
1), the rts_n output is controlled in the same way,
but is also gated with the receiver FIFO threshold
trigger (rts_n is inactive high when above the
threshold). The rts_n signal will be de-asserted
when this register is set low.

(0]

Data Terminal Ready
(dtr)

This is used to directly control the Data Terminal
Ready output. The value written to this location is
inverted and driven out on uart_dtr_n. The Data
Terminal Ready output is used to inform the
modem or data set that the UART is ready to
establish communications.

RW 0x0

Altera Corporation

16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Isr 8-33

Title Reset Description
Value

Line Status 0x14 0x000000 | Reports status of transmit and receive.
Register 60
Bit Fields
31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rfe temt thre bi fe pe oe dr

Table 8-28: Isr Fields

[31:8] Reserved
[7] Receiver FIFO Error bit | Thig bit is only relevant when FIFQ's are enabled R 0x0
(rfe) (FCR[0] set to one). This is used to indicate if there

is at least one parity error, framing error, or break
indication in the FIFO. This bit is cleared when the
LSR is read and the character with the error is at the
top of the receiver FIFO and there are no
subsequent errors in the FIFO.

(6] Transmitter Empty bit | 1f i FIFO mode and FIFO's enabled (FCR[0] set to R 0x1
(temt) one), this bit is set whenever the Transmitter Shift
Register and the FIFO are both empty. If FIFO's are
disabled, this bit is set whenever the Transmitter
Holding Register and the Transmitter Shift Register
are both empty. Indicator is cleared when new data
is written into the THR or Transmit FIFO.

[5] Transmit Holding This bit indicates that the THR or Tx FIFO is empty R 0x1
Register Empty bit if THRE mode is disabled (IER[7] set to zero). This
(thre) bit is set whenever data is transferred from the THR

or Tx FIFO to the transmitter shift register and no
new data has been written to the THR or Tx FIFO.
This also causes a THRE Interrupt to occur, if the
THRE Interrupt is enabled. If both THRE and
FIFOs are enabled, both (IER[7] set to one and
FCR[0] set to one respectively), the functionality
will indicate the transmitter FIFO is full, and no
longer controls THRE interrupts, which are then
controlled by the FCR[5:4] threshold setting.

16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8-34

UG-01085
2016.06.17

Break Interrupt (bi)

This is used to indicate the detection of a break
sequence on the serial input data. Set whenever the
serial input, sin, is held in a logic 0 state for longer
than the sum of start time + data bits + parity + stop
bits. A break condition on serial input causes one
and only one character, consisting of all zeros, to be
received by the UART. The character associated
with the break condition is carried through the
FIFO and is revealed when the character is at the
top of the FIFO. This bit always stays in sync with
the associated character in RBR. If the current
associated character is read through RBR, this bit
will be updated to be in sync with the next character
in RBR. Reading the LSR clears the BI bit.

(3]

Framing Error (fe)

This is used to indicate the occurrence of a framing
error in the receiver. A framing error occurs when
the receiver does not detect a valid STOP bit in the
received data. In the FIFO mode, since the framing
error is associated with a character received, it is
revealed when the character with the framing error
is at the top of the FIFO. When a framing error
occurs the UART will try to resynchronize. It does
this by assuming that the error was due to the start
bit of the next character and then continues
receiving the other bit data, and/or parity and stop.
It should be noted that the Framing Error (FE)
bit(LSR[3]) will be set if a break interrupt has
occurred, as indicated by a Break Interrupt BIT bit
(LSR[4]). This bit always stays in sync with the
associated character in RBR. If the current
associated character is read through RBR, this bit
will be updated to be in sync with the next character
in RBR. Reading the LSR clears the FE bit.

RC 0x0

Altera Corporation

Parity Error (pe)

This is used to indicate the occurrence of a parity
error in the receiver if the Parity Enable (PEN) bit
(LCR[3]) is set. Since the parity error is associated
with a character received, it is revealed when the
character with the parity error arrives at the top of
the FIFO. It should be noted that the Parity Error
(PE) bit (LSR[2]) will be set if a break interrupt has
occurred, as indicated by Break Interrupt (BI) bit
(LSR[4]). In this situation, the Parity Error bit is set
depending on the combination of EPS (LCR[4]) and
DLS (LCR[1:0]). This bit always stays in sync with
the associated character in RBR. If the current
associated character is read through RBR, this bit
will be updated to be in sync with the next character
in RBR. Reading the LSR clears the PE bit.

RC 0x0

16550 UART Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

8-35

(1] |Overrun error bit (ce) | (oe)

Thls is used to indicate the occurrence of an
overrun error. This occurs if a new data character
was received before the previous data was read. In
the non-FIFO mode, the OE bit is set when a new
character arrives in the receiver before the previous
character was read from the RBR. When this
happens, the data in the RBR is overwritten. In the
FIFO mode, an overrun error occurs when the FIFO
is full and new character arrives at the receiver. The
data in the FIFO is retained and the data in the
receive shift register is lost.Reading the LSR clears
the OE bit.

(0] Data Ready bit (dr) This is used to indicate that the receiver contains at R 0x0
least one character in the RBR or the receiver FIFO.
This bit is cleared when the RBR is read in the non-
FIFO mode, or when the receiver FIFO is empty, in
the FIFO mode.
16550 UART Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

8-36 msr 2016.06.17
Title Reset Description
Value
Modem 0x18 0x000000 | It should be noted that whenever bits
Status 00 0,1,2 or 3 are set to loglc one, to
Register indicate a change on the modem

control inputs, a modem status
interrupt will be generated if enabled
via the IER regardless of when the
change occurred. Since the delta bits
(bits 0, 1, 3) can get set after a reset if
their respective modem signals are
active (see individual bits for details), a
read of the MSR after reset can be
performed to prevent unwanted

interrupts.
Bit Fields
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ded ri dsr cts ddcd teri ddsr dcts

Table 8-29: msr Fields

[31:8] Reserved
(7] Data Carrier Detect | Thijs bit is the complement of the modem R 0x0
(dcd) control line (ded_n). This bit is used to

indicate the current state of ded_n. When the
Data Carrier Detect input (dcd_n) is asserted
it is an indication that the carrier has been
detected by the modem or data set.

(6] Ring Indicator (ri) | This bit is the complement of modem R 0x0
control line (ri_n). This bit is used to
indicate the current state of ri_n. When the
Ring Indicator input (ri_n) is asserted it is
an indication that a telephone ringing signal
has been received by the modem or data set.

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

8-37

"~ [5] |Data Set Ready (dsr)

Th1s bit is the complement of modem
control line dsr_n. This bit is used to
indicate the current state of dsr_n. When the
Data Set Ready input (dsr_n) is asserted it is
an indication that the modem or data set is
ready to establish communications with the
uart.

Clear to Send (cts)

This bit is the complement of modem
control line cts_n. This bit is used to
indicate the current state of cts_n. When the
Clear to Send input (cts_n) is asserted it is
an indication that the modem or data set is
ready to exchange data with the uart.

0x0

(3]

Delta Data Carrier
Detect (ddcd)

This is used to indicate that the modem
control line ded_n has changed since the last
time the MSR was read. Reading the MSR
clears the DDCD bit.

Note: If the DDCD bit is not set and the
dcd_n signal is asserted (low) and a
reset occurs (software or otherwise),
then the DDCD bit will get set when
the reset is removed if the dcd_n
signal remains asserted.

RC

0x0

Trailing Edge of Ring
Indicator (teri)

This is used to indicate that a change on the
input ri_n (from an active low, to an
inactive high state) has occurred since the
last time the MSR was read. Reading the
MSR clears the TERI bit.

RC

0x0

(1]

Delta Data Set Ready
(ddsr)

This is used to indicate that the modem
control line dsr_n has changed since the last
time the MSR was read. Reading the MSR
clears the DDSR bit.

Note: If the DDSR bit is not set and the
dsr_n signal is asserted (low) and a
reset occurs (software or otherwise),
then the DDSR bit will get set when
the reset is removed if the dsr_n
signal remains asserted.

RC

0x0

16550 UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8-38

UG-01085
2016.06.17

Delta Clear to Send
(dcts)

This is used to indicate that the modem
control line cts_n has changed since the last
time the MSR was read. Reading the MSR
clears the DCTS bit.

Note: If the DCTS bit is not set and the
cts_n signal is asserted (low) and a
reset occurs (software or otherwise),
then the DCTS bit will get set when
the reset is removed if the cts_n
signal remains asserted.

Altera Corporation

16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Scratchpad
Register

‘ 0x1C ‘

0x000000
0

scr 8-39

Title Offset Access Reset Description
Value

Scratchpad Register

Bit Fields

31 30

29 28 27

26

25 24 23 22 21 20

19

18

17 16

15 14

13 12 11

10

scr

Table 8-30: scr Fields

I S O S)

[31:8]

Reserved

[7:0]

Scratchpad Register
(scr)

This register is for programmers to use as a
temporary storage space.

RW 0x0

Document Revision History

Table 8-31: Document Revision History

o e | o

December 2015 | 2015.12.16 | Product ID changed in "16550 UART Release Information"” section.

16550 UART Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

840 . . UG-01085
E Document Revision History 2016.06.17

N R

November 2015 2015.11.06 | Updated the following topics:

o Core Overview on page 8-1
» Feature Description

« Table 8-1

» General Architecture
o Figure 8-1

+ Configuration Parameters
o Table 8-8

o DMA Support on page 8-6
+ Supported Features

o Table 8-12
 Configuration

» Figure 8-8
o UART Device Structure on page 8-15

« Example 1 and 2
o Address Map and Register Descriptions on page 8-21

June 2015 2015.06.12 |, Added "16550 UART General Programming Flow Chart" section
o Added "16550 UART Release Information" section
o Added "Address Map and Register Descriptions” section

 Added Stick parity/Force parity feature into the "UART Features
and Configurability" table in the "Feature Description” section

« Updated "Interface" section with sout_oe signal details in the "Flow
Control" table

+ Updated "Underrun" section

July 2014 2014.07.24 | Initial Release.

Altera Corporation 16550 UART Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%2016550%20UART%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SPI Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

SPI is an industry-standard serial protocol commonly used in embedded systems to connect
microprocessors to a variety of off-chip sensor, conversion, memory, and control devices. The SPI core
with Avalon® interface implements the SPI protocol and provides an Avalon Memory-Mapped (Avalon-
MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When configured as a master, the SPI
core can control up to 32 independent SPI slaves. The width of the receive and transmit registers are
configurable between 1 and 32 bits. Longer transfer lengths can be supported with software routines. The
SPI core provides an interrupt output that can flag an interrupt whenever a transfer completes.

Functional Description

The SPI core communicates using two data lines, a control line, and a synchronization clock:

o Master Out Slave In (mosi)—Output data from the master to the inputs of the slaves
« Master In Slave Out (miso)—Output data from a slave to the input of the master
o Serial Clock (sclk)—Clock driven by the master to slaves, used to synchronize the data bits

o Slave Select (ss_n)— Select signal (active low) driven by the master to individual slaves, used to select
the target slave

The SPI core has the following user-visible features:

« A memory-mapped register space comprised of five registers: rxdata, txdata, status, control, and
slaveselect

o Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the Avalon-MM slave port. The
sclk, ss_n, mosi, and miso ports provide the hardware interface to other SPI devices. The behavior of
sclk, ss_n, mosi, and miso depends on whether the SPI core is configured as a master or slave.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20SPI%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

9-2 Example Configurations 2016.06.17

Figure 9-1: SPI Core Block Diagram (Master Mode)

Avalon-MM | o baud rate divisor*
slave &)

| »sck
interface | N0l | i

to on-chip data
logic ¢ ’

rxdata ‘4{ shift register ‘H— miso

|
’ txdata H shift register }—»mosi

RQ ¢— control

slave select* » 5s_n15

»55_n0
P s5_nl

*Not present on SPI slave

The SPI core logic is synchronous to the clock input provided by the Avalon-MM interface. When
configured as a master, the core divides the Avalon-MM clock to generate the SCLK output. When
configured as a slave, the core's receive logic is synchronized to SCLK input.

For more details, refer to the "Interval Timer Core" chapter.

Example Configurations

The SPI Core block diagram and the SPI Core Configured as a Slave diagram show two possible
configurations. In below in the SPI Core Configured as a Slave diagram, the SPI core provides a slave
interface to an off-chip SPI master.

Figure 9-2: SPI Core Configured as a Slave

Altera FPGA
SPI sck » B sck Avalon-MM
5 q interface
o 55N
VST mos | " 4> toon-chip
Device s 7 Py mos
miso . logic
4 iso Y

SPI component
(configured as slave)

In the SPI Core Block Diagram, the SPI core provides a master interface driving multiple off-chip slave
devices. Each slave device in the SPI Core Configured as a Slave figure must tristate its miso output
whenever its select signal is not asserted.

The ss_n signal is active-low. However, any signal can be inverted inside the FPGA, allowing the slave-
select signals to be either active high or active low.

Transmitter Logic

The SPI core transmitter logic consists of a transmit holding register (txdata) and transmit shift register,
each n bits wide. The register width n is specified at system generation time, and can be any integer value

Altera Corporation SPI Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Receiver Logic 9-3

from 8 to 32. After a master peripheral writes a value to the txdata register, the value is copied to the shift
register and then transmitted when the next operation starts.

The shift register and the txdata register provide double buffering during data transmission. A new value
can be written into the txdata register while the previous data is being shifted out of the shift register.
The transmitter logic automatically transfers the txdata register to the shift register whenever a serial
shift operation is not currently in process.

In master mode, the transmit shift register directly feeds the mosi output. In slave mode, the transmit shift
register directly feeds the miso output. Data shifts out LSB first or MSB first, depending on the configura-
tion of the SPI core.

Receiver Logic

The SPI core receive logic consists of a receive holding register (rxdata) and receive shift register, each n
bits wide. The register width n is specified at system generation time, and can be any integer value from 8
to 32. A master peripheral reads received data from the rxdata register after the shift register has captured
a full n-bit value of data.

The shift register and the rxdata register provide double buffering while receiving data. The rxdata
register can hold a previously received data value while subsequent new data is shifting into the shift
register. The receiver logic automatically transfers the shift register content to the rxdata register when a
serial shift operation completes.

In master mode, the shift register is fed directly by the miso input. In slave mode, the shift register is fed
directly by the mosi input. The receiver logic expects input data to arrive LSB first or MSB first, depending
on the configuration of the SPI core.

Master and Slave Modes

At system generation time, the designer configures the SPI core in either master mode or slave mode. The
mode cannot be switched at runtime.

Master Mode Operation

In master mode, the SPI ports behave as shown in the table below.

Table 9-1: Master Mode Port Configurations

I T T

mosi output Data output to slave(s)

miso input Data input from slave(s)

sclk output Synchronization clock to all slaves

ss_nM | output Slave select signal to slave M, where M is a number between 0 and 31.

SPI Core

In master mode, an intelligent host (for example, a microprocessor) configures the SPI core using the
control and slaveselect registers, and then writes data to the txdata buffer to initiate a transaction. A
master peripheral can monitor the status of the transaction by reading the status register. A master
peripheral can enable interrupts to notify the host whenever new data is received (for example, a transfer
has completed), or whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and receives data at the same time. The
master transmits a new data bit on the mosi output and the slave drives a new data bit on the miso input

Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9-4 Slave Mode Operation

UG-01085
2016.06.17

for each active edge of sclk. The SPI core divides the Avalon-MM system clock using a clock divider to
generate the sclk signal.

When the SPI core is configured to interface with multiple slaves, the core has one ss_n signal for each
slave. During a transfer, the master asserts ss_n to each slave specified in the slaveselect register. Note
that there can be no more than one slave transmitting data during any particular transfer, or else there will
be a contention on the miso input. The number of slave devices is specified at system generation time.

Slave Mode Operation

In slave mode, the SPI ports behave as shown in the table below.

Table 9-2: Slave Mode Port Configurations

I R T

mosi input Data input from the master
miso output Data output to the master
sclk input Synchronization clock
ss_n input Select signal

In slave mode, the SPI core simply waits for the master to initiate transactions. Before a transaction
begins, the slave logic continuously polls the ss_n input. When the master asserts ss_n, the slave logic
immediately begins sending the transmit shift register contents to the miso output. The slave logic also
captures data on the mosi input, and fills the receive shift register simultaneously. After a word is received
by the slave, the master must de-assert the ss_n signal and reasserts the signal again when the next word is
ready to be sent.

An intelligent host such as a microprocessor writes data to the txdata registers, so that it is transmitted
the next time the master initiates an operation. A master peripheral reads received data from the rxdata
register. A master peripheral can enable interrupts to notify the host whenever new data is received, or
whenever the transmit buffer is ready for new data.

Multi-Slave Environments

When ss_n is not asserted, typical SPI cores set their miso output pins to high impedance. The Altera®-
provided SPI slave core drives an undefined high or low value on its miso output when not selected.
Special consideration is necessary to avoid signal contention on the miso output, if the SPI core in slave
mode is connected to an off-chip SPI master device with multiple slaves. In this case, the ss_n input
should be used to control a tristate buffer on the miso signal.

Altera Corporation SPI Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . . 9-5
2016.06.17 Configuration 5

Figure 9-3: SPI Core in a Multi-Slave Environment

sclk sclk

SPI mosi mosi

Master < miso miso

Device ss_n0 ?j » 5510

ss_01
SPI component
(configured as slave)

sclk
mosi 5Pl
S n Device

Configuration

The following sections describe the available configuration options.

Master/Slave Settings
The designer can select either master mode or slave mode to determine the role of the SPI core. When
master mode is selected, the following options are available: Number of select (SS_n) signals, SPI clock
rate, and Specify delay.

Number of Select (SS_n) Signals

This setting specifies the number of slaves the SPI master connects to. The range is 1 to 32. The SPI master
core presents a unique ss_n signal for each slave.

SPI Clock (sclk) Rate

This setting determines the rate of the sclk signal that synchronizes data between master and slaves. The
target clock rate can be specified in units of Hz, kHz or MHz. The SPI master core uses the Avalon-MM
system clock and a clock divisor to generate sclk.

The actual frequency of sclk may not exactly match the desired target clock rate. The achievable clock
values are:

<Avalon-MM system clock frequency>/ [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target value.

Specify Delay

Turning on this option causes the SPI master to add a time delay between asserting the ss_n signal and
shifting the first bit of data. This delay is required by certain SPI slave devices. If the delay option is on,
you must also specify the delay time in units of ns, gs or ms. An example is shown in below.

SPI Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

9-6 Data Register Settings 2016.06.17

Figure 9-4: Time Delay Between Asserting ss_n and Toggling sclk

ssn 1\) /S
SCLK I L% | —

The delay generation logic uses a granularity of half the period of sclk. The actual delay achieved is the
desired target delay rounded up to the nearest multiple of half the sclk period, as shown in the follow two
equations.

Table 9-3:

p = 1/2 x (period of sclk)

Table 9-4:

Actual delay = ceiling x (desired delay/ p)

Data Register Settings

The data register settings affect the size and behavior of the data registers in the SPI core. There are two
data register settings:

o Width—This setting specifies the width of rxdata, txdata, and the receive and transmit shift
registers. The range is from 1 to 32.

o Shift direction—This setting determines the direction that data shifts (MSB first or LSB first) into and
out of the shift registers.

Timing Settings
The timing settings affect the timing relationship between the ss_n, sclk, mosi and miso signals. In this
discussion the mosi and miso signals are referred to generically as data. There are two timing settings:

 Clock polarity—This setting can be 0 or 1. When clock polarity is set to 0, the idle state for sclk is
low. When clock polarity is set to 1, the idle state for sclk is high.

o Clock phase—This setting can be 0 or 1. When clock phase is 0, data is latched on the leading edge of
sclk, and data changes on trailing edge. When clock phase is 1, data is latched on the trailing edge of
sclk, and data changes on the leading edge.

The following four clock polarity figures demonstrate the behavior of signals in all possible cases of
clock polarity and clock phase.

Figure 9-5: Clock Polarity = 0, Clock Phase =0

SS n \ i\ Y
SCLK I L I I
DATA OUT —— MSB X X W X LSB)
Altera Corporation SPI Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085] 07
2016.06.17 Software Programming Model -

Figure 9-6: Clock Polarity = 0, Clock Phase = 1

SS_n —\ \'\ /—
SCLK [| | | | ! [1
DATA oUT —(MSB X X W X LSB —

Figure 9-7: Clock Polarity = 1, Clock Phase = 0

S5 n —\ “ /—
SCLK [[W [|
DATA_OUT ——— ¢ MSB X b Ay X LSB) —

Figure 9-8: Clock Polarity = 1, Clock Phase =1

ssn\)| [
SCLK | I | I l) | I
DATA_ OUT — MSB X X I\ X LSB —

Software Programming Model

The following sections describe the software programming model for the SPI core, including the register
map and software constructs used to access the hardware. For Nios® II processor users, Altera provides
the HAL system library header file that defines the SPI core registers. The SPI core does not match the
generic device model categories supported by the HAL, so it cannot be accessed via the HAL API or the
ANSI C standard library. Altera provides a routine to access the SPI hardware that is specific to the SPI
core.

Hardware Access Routines

Altera provides one access routine, alt_avalon_spi_command(), that provides general-purpose access to
the SPI core that is configured as a master.

alt_avalon_spi_command()

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,

alt_u32 write_length,
const alt_u8* wdata,

alt_u32 read_length,
alt_u8* read_data,

alt_u32 flags)

Thread-safe: No.

SPI Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9-8 Software Files

UG-01085
2016.06.17

Available from
ISR:

No.

Include:

<altera_avalon_spi.h>

Description:

This function performs a control sequence on the SPI bus. It supports only
SPI masters with data width less than or equal to 8 bits. A single call to this
function writes a data buffer of arbitrary length to the mosi port, and then
reads back an arbitrary amount of data from the miso port. The function
performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select
output is 0.

(2) Transmits write_length bytes of data from wdata through the SPI
interface, discarding the incoming data on the miso port.

(3) Reads read_length bytes of data and stores the data into the buffer
pointed to by read_data. The mosi port is set to zero during the read transac-
tion.

(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from
scattered buffers, call the function multiple times and specify the merge flag
on all the accesses except the last.

To access the SPI bus from more than one thread, you must use a semaphore
or mutex to ensure that only one thread is executing within this function at
any time.

Returns:

The number of bytes stored in the read_data buffer.

Software Files

The SPI core is accompanied by the following software files. These files provide a low-level interface to the

hardware.

« altera_avalon_spi.h—This file defines the core's register map, providing symbolic constants to access
the low-level hardware.

« altera_avalon_spi.c—This file implements low-level routines to access the hardware.

Altera Corporation

SPI Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Register Map 9-9

Register Map

An Avalon-MM master peripheral controls and communicates with the SPI core via the six 32-bit
registers, shown in below in the Register Map for SPI Master Device figure. The table assumes an n-bit
data width for rxdata and txdata.

Table 9-5: Register Map for SPI Master Device

Internal Register Name Type
Address [R/W] 1 1

0 rxdata ® RXDATA (n-1..0)

1 txdata ® A TXDATA (n-1..0)

2 status © R/W EOP |E RRDY |TRDY |TMT |TOE |ROE

3 control R/W Sso | 1EOP | IE IRRD | ITRD ITOE | IROE
Y Y

4 Reserved —

5 slaveselect ? |R/W Slave Select Mask

6 eop_value® R/W End of Packet Value (n-1..0)

Reading undefined bits returns an undefined value. Writing to undefined bits has no effect.

rxdata Register

A master peripheral reads received data from the rxdata register. When the receive shift register receives
a full n bits of data, the status register's RRDY bit is set to 1 and the data is transferred into the rxdata
register. Reading the rxdata register clears the RRDY bit. Writing to the rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not the previous data was retrieved. If
RRDY is 1 when data is transferred into the rxdata register (that is, the previous data was not retrieved), a
receive-overrun error occurs and the status register's ROE bit is set to 1. In this case, the contents of
rxdata are undefined.

txdata Register

A master peripheral writes data to be transmitted into the txdata register. When the status register's
TRDY bit is 1, it indicates that the txdata register is ready for new data. The TRDY bit is set to 0 whenever
the txdata register is written. The TRDY bit is set to 1 after data is transferred from the txdata register
into the transmitter shift register, which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the transmitter is ready for new data. If
TRDY is 0 and a master peripheral writes new data to the txdata register, a transmit-overrun error occurs
and the status register's TOE bit is set to 1. In this case, the new data is ignored, and the content of txdata
remains unchanged.

(©) A write operation to the status register clears the ROE, TOE, and E bits.
() Present only in master mode.
® Bits 31 to n are undefined when n is less than 32.

SPI Core

Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
9-10 status Register 2016.06.17

As an example, assume that the SPI core is idle (that is, the txdata register and transmit shift register are
empty), when a CPU writes a data value into the txdata holding register. The TRDY bit is set to 0
momentarily, but after the data in txdata is transferred into the transmitter shift register, TRDY returns to
1. The CPU writes a second data value into the txdata register, and again the TRDY bit is set to 0. This
time the shift register is still busy transferring the original data value, so the TRDY bit remains at 0 until the
shift operation completes. When the operation completes, the second data value is transferred into the
transmitter shift register and the TRDY bit is again set to 1.

status Register

The status register consists of bits that indicate status conditions in the SPI core. Each bit is associated
with a corresponding interrupt-enable bit in the control register, as discussed in the Control Register
section. A master peripheral can read status at any time without changing the value of any bits. Writing
status does clear the ROE, TOE and E bits.

Table 9-6: status Register Bits

I

3 |ROE Receive-overrun error

The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the
RRDY bit is 1). In this case, the new data overwrites the old. Writing to the status register
clears the ROE bit to 0.

4 | TOE Transmitter-overrun error

The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is,
while the TRDY bit is 0). In this case, the new data is ignored. Writing to the status register
clears the TOE bit to 0.

5|TMT Transmitter shift-register empty

In master mode, the TMT bit is set to 0 when a transaction is in progress and set to 1 when the
shift register is empty.

In slave mode, the TMT bit is set to 0 when the slave is selected (SS_n is low) or when the SPI
Slave register interface is not ready to receive data.

6 | TRDY |Transmitter ready

The TRDY bit is set to 1 when the txdata register is empty.

7 |RRDY | Receiver ready
The RRDY bit is set to 1 when the rxdata register is full.

8 |E Error

The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer
to detect error conditions. Writing to the status register clears the E bit to 0.

Altera Corporation SPI Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17

control Register 9-11

C e | e

9 | EOP End of Packet

The EOP bit is set when the End of Packet condition is detected. The End of Packet condition is
detected when either the read data of the rxdata register or the write data to the txdata
register is matching the content of the eop_value register.

control Register

The control register consists of data bits to control the SPI core's operation. A master peripheral can read
control at any time without changing the value of any bits.

Most bits (IROE, I1TOE, ITRDY, IRRDY, and IE) in the control register control interrupts for status
conditions represented in the status register. For example, bit 1 of status is ROE (receiver-overrun
error), and bit 1 of control is 1ROE, which enables interrupts for the ROE condition. The SPI core asserts an
interrupt request when the corresponding bits in status and control are both 1.

Table 9-7: control Register Bits

Y

3 | IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 |1TOE Setting 1TOE to 1 enables interrupts for transmitter-overrun errors.

6 |ITRDY | Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 |IRRDY | Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 |IE Setting IE to 1 enables interrupts for any error condition.

9 | 1EOP Setting 1EOP to 1 enables interrupts for the End of Packet condition.

10 | SsO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial

shift operation is in progress or not. The slaveselect register controls which ss_n outputs
are asserted. SSO can be used to transmit or receive data of arbitrary size, for example,
greater than 32 bits.

After reset, all bits of the control register are set to 0. All interrupts are disabled and no ss_n signals are
asserted.

slaveselect Register

SPI Core

The slaveselect register is a bit mask for the ss_n signals driven by an SPI master. During a serial shift
operation, the SPI master selects only the slave device(s) specified in the slaveselect register.

The slaveselect register is only present when the SPI core is configured in master mode. There is one
bit in slaveselect for each ss_n output, as specified by the designer at system generation time.

A master peripheral can set multiple bits of slaveselect simultaneously, causing the SPI master to
simultaneously select multiple slave devices as it performs a transaction. For example, to enable
communication with slave devices 1, 5, and 6, set bits 1, 5, and 6 of slaveselect. However, consideration
is necessary to avoid signal contention between multiple slaves on their miso outputs.

Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9-12 end of packet value Register

UG-01085
2016.06.17

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after a device reset, slave device 0 is
automatically selected.

end of packet value Register

The end of packet value register allows you to specify the value of the SPI data word. The SPI data word

acts as the end of packet word.

Document Revision History

Table 9-8: Document Revision History

e e | e

June 2016

2016.06.17

Updates:

» Removed content regarding Avalon-MM flow control
o Table 9-5: eop_value added

« Table 9-6: EOP added

o Table 9-7: 1EOP added

+ end of packet value Register on page 9-12: New topic

December 2010

v10.1.0

Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010

v10.0.0

No change from previous release.

November 2009

v9.1.0

Revised register width in transmitter logic and receiver logic.
Added description on the disable flow control option.

Added R/W column in Table 9-5 .

March 2009

v9.0.0

No change from previous release.

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Updated the width of the parameters
and signals from 16 to 32.

May 2008

v8.0.0

Updated the description of the TMT bit.

Altera Corporation

SPI Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optrex 16207 LCD Controller Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The Optrex 16207 LCD controller core with Avalon® Interface (LCD controller core) provides the
hardware interface and software driver required for a Nios® II processor to display characters on an
Optrex 16207 (or equivalent) 16x2-character LCD panel. Device drivers are provided in the HAL system
library for the Nios II processor. Nios II programs access the LCD controller as a character mode device
using ANSI C standard library routines, such as printf(). The LCD controller is Qsys-ready, and
integrates easily into any Qsys-generated system.

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD module and provide several ready-
made example designs that display text on the Optrex 16207 via the LCD controller.

For details about the Optrex 16207 LCD module, see the manufacturer's Dot Matrix Character LCD
Module User's Manual available online.

Functional Description

The LCD controller core consists of two user-visible components:

+ Eleven signals that connect to pins on the Optrex 16207 LCD panel—These signals are defined in the
Optrex 16207 data sheet.

« E—Enable (output)
« RS—Register Select (output)
o R/W—Read or Write (output)
« DBO through DB7—Data Bus (bidirectional)
« An Avalon Memory-Mapped (Avalon-MM) slave interface that provides access to 4 registers.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Optrex%2016207%20LCD%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
10-2 Software Programming Model 2016.06.17

Figure 10-1: LCD Controller Block Diagram

Altera FPGA

address E

RS

Avalon-MM shve data
interface to
on-chip logic control

LCD
Controller

Optrex 16207

RIW LCD Module

DBO0.DB7

YV VY

Software Programming Model

This section describes the software programming model for the LCD controller.

HAL System Library Support

Altera provides HAL system library drivers for the Nios II processor that enable you to access the LCD
controller using the ANSI C standard library functions. The Altera-provided drivers integrate into the
HAL system library for Nios II systems. The LCD driver is a standard character-mode device, as described
in the Nios II Software Developer’s Handbook. Therefore, using printf() is the easiest way to write
characters to the display.

The LCD driver requires that the HAL system library include the system clock driver.

Displaying Characters on the LCD

The driver implements VT100 terminal-like behavior on a miniature scale for the 16x2 screen. Characters
written to the LCD controller are stored to an 80-column x 2-row buffer maintained by the driver. As
characters are written, the cursor position is updated. Visible characters move the cursor position to the
right. Any visible characters written to the right of the buffer are discarded. The line feed character (\n)
moves the cursor down one line and to the left-most column.

The bulffer is scrolled up as soon as a printable character is written onto the line below the bottom of the
buffer. Rows do not scroll as soon as the cursor moves down to allow the maximum useful information in
the buffer to be displayed.

If the visible characters in the buffer fit on the display, all characters are displayed. If the buffer is wider
than the display, the display scrolls horizontally to display all the characters. Different lines scroll at
different speeds, depending on the number of characters in each line of the buffer.

The LCD driver supports a small subset of ANSI and VT100 escape sequences that can be used to control
the cursor position, and clear the display as shown below.

Table 10-1: Escape Sequence Supported by the LCD Controller

BS (\b) ‘ Moves the cursor to the left by one character.

Altera Corporation Optrex 16207 LCD Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optrex%2016207%20LCD%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Software Files 10-3
T e T

CR (\r) Moves the cursor to the start of the current line.

LF Q\n) Moves the cursor to the start of the line and move it down one
line.

ESC ((\x1B) Starts a VT100 control sequence.

ESC [<y> ; <x> H Moves the cursor to the y, x position specified — positions are
counted from the top left which is 1;1.

ESC [K Clears from current cursor position to end of line.

ESC [2 J Clears the whole screen.

The LCD controller is an output-only device. Therefore, attempts to read from it returns immediately
indicating that no characters have been received.

The LCD controller drivers are not included in the system library when the Reduced device drivers
option is enabled for the system library. If you want to use the LCD controller while using small drivers
for other devices, add the preprocessor option—DALT_USE_LCD_16207 to the preprocessor options.

Software Files

The LCD controller is accompanied by the following software files. These files define the low-level
interface to the hardware and provide the HAL drivers. Application developers should not modify these
files.

« altera_avalon_lcd_16207_regs.h — This file defines the core's register map, providing symbolic
constants to access the low-level hardware.

« altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files implement the LCD controller
device drivers for the HAL system library.

Register Map

The HAL device drivers make it unnecessary for you to access the registers directly. Therefore, Altera does
not publish details about the register map. For more information, the altera_avalon_lcd_16207_regs.h
file describes the register map, and the Dot Matrix Character LCD Module User's Manual from Optrex
describes the register usage.

Interrupt Behavior

The LCD controller does not generate interrupts. However, the LCD driver's text scrolling feature relies
on the HAL system clock driver, which uses interrupts for timing purposes.

Document Revision History

Table 10-2: Document Revision History

e e | s

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 1010 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

Optrex 16207 LCD Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optrex%2016207%20LCD%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10-4 Document Revision History

UG-01085
2016.06.17

I I S

July 2010 v10.0.0 No change from previous release.
November 2009 |91 No change from previous release.
March 2009 v9.0.0 No change from previous release.
November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 No change from previous release.

Altera Corporation

Optrex 16207 LCD Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optrex%2016207%20LCD%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PIO Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The parallel input/output (PIO) core with Avalon interface provides a memory-mapped interface between
an Avalon Memory-Mapped (Avalon-MM) slave port and general-purpose I/O ports. The I/O ports
connect either to on-chip user logic, or to I/O pins that connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in situations where a “bit banging”
approach is sufficient. Some example uses are:

« Controlling LEDs
« Acquiring data from switches
« Controlling display devices

+ Configuring and communicating with off-chip devices, such as application-specific standard products
(ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based on input signals.

Functional Description

Each PIO core can provide up to 32 I/O ports. An intelligent host such as a microprocessor controls the
PIO ports by reading and writing the register-mapped Avalon-MM interface. Under control of the host,
the PIO core captures data on its inputs and drives data to its outputs. When the PIO ports are connected
directly to I/O pins, the host can tristate the pins by writing control registers in the PIO core. The example
below shows a processor-based system that uses multiple PIO cores to drive LEDs, capture edges from on-

chip reset-request control logic, and control an off-chip LCD display.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 .tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20PIO%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

11-2 Data Input and Output 2016.06.17

Figure 11-1: System Using Multiple PIO Cores

Altera FPGA

PIO core _
> (output only) » LEDs
CPU <> .
i |
@
@
S
7 | PO Reset
g (,c oret - request <
= input | Capture i
E IRQ| “only) logic <
&
g
Program 8 T
and Data | .
Memory PIO . 11 cp
| core =77 display
(bidirectional)

When integrated into an Qsys-generated system, the PIO core has two user-visible features:

« A memory-mapped register space with four registers: data, direction, interruptmask, and
edgecapture
e 1to321/O ports

The I/O ports can be connected to logic inside the FPGA, or to device pins that connect to off-chip
devices. The registers provide an interface to the I/O ports via the Avalon-MM interface. See Register
Map for the PIO Core table for a description of the registers.

Data Input and Output

The PIO core I/O ports can connect to either on-chip or off-chip logic. The core can be configured with
inputs only, outputs only, or both inputs and outputs. If the core is used to control bidirectional I/O pins
on the device, the core provides a bidirectional mode with tristate control.

The hardware logic is separate for reading and writing the data register. Reading the data register returns
the value present on the input ports (if present). Writing data affects the value driven to the output ports
(if present). These ports are independent; reading the data register does not return previously-written
data.

Edge Capture

The PIO core can be configured to capture edges on its input ports. It can capture low-to-high transitions,
high-to-low transitions, or both. Whenever an input detects an edge, the condition is indicated in the
edgecapture register. The types of edges detected is specified at system generation time, and cannot be
changed via the registers.

IRQ Generation

The PIO core can be configured to generate an IRQ on certain input conditions. The IRQ conditions can
be either:

Altera Corporation PIO Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Example Configurations 11-3

o Level-sensitive—The PIO core hardware can detect a high level. A NOT gate can be inserted external to
the core to provide negative sensitivity.
o Edge-sensitive—The core's edge capture configuration determines which type of edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt mask determines which input
port can generate interrupts.

Example Configurations
Figure 11-2: PIO Core with Input Ports, Output Ports, and IRQ Support

- 32
Ayalon MM | _address. -
interface data data

to on-chip contro out i
(|
logic

S
'y

interruptmask

IRQ

edgecapture

The block diagram below shows the PIO core configured in bidirectional mode, without support for IRQs.
Figure 11-3: PIO Cores with Bidirectional Ports

Avalon-MM | _address in
interface data data N

logic

N out :’\ I
toon-chip | g control JJ j

direction

Avalon-MM Interface

The PIO core's Avalon-MM interface consists of a single Avalon-MM slave port. The slave port is capable
of fundamental Avalon-MM read and write transfers. The Avalon-MM slave port provides an IRQ output
so that the core can assert interrupts.

Configuration

The following sections describe the available configuration options.

Basic Settings
The Basic Settings page allows you to specify the width, direction and reset value of the I/O ports.

PIO Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
11-4 Width 2016.06.17

Width

The width of the I/O ports can be set to any integer value between 1 and 32.

Direction

You can set the port direction to one of the options shown below.

Table 11-1: Direction Settings

- T - R

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving
and capturing data. The direction of each pin is individually
selectable. To tristate an FPGA I/O pin, set the direction to

input.
Input ports only In this mode the PIO ports can capture input only.
Output ports only In this mode the PIO ports can drive output only.
Both input and output ports In this mode, the input and output ports buses are separate,

unidirectional buses of n bits wide.

Output Port Reset Value

You can specify the reset value of the output ports. The range of legal values depends on the port width.

Output Register

The option Enable individual bit set/clear output register allows you to set or clear individual bits of the
output port. When this option is turned on, two additional registers—outset and outclear—are
implemented. You can use these registers to specify the output bit to set and clear.

Input Options

The Input Options page allows you to specify edge-capture and IRQ generation settings. The Input
Options page is not available when Output ports only is selected on the Basic Settings page.

Altera Corporation PIO Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Edge Capture Register 11-5

Edge Capture Register

Interrupt

Turn on Synchronously capture to include the edge capture register, edgecapture, in the core. The edge
capture register allows the core to detect and generate an optional interrupt when an edge of the specified
type occurs on an input port. The user must further specify the following features:

Select the type of edge to detect:

« Rising Edge
 Falling Edge
« Either Edge

Turn on Enable bit-clearing for edge capture register to clear individual bit in the edge capture
register. To clear a given bit, write 1 to the bit in the edge capture register.

Turn on Generate IRQ to assert an IRQ output when a specified event occurs on input ports. The user
must further specify the cause of an IRQ event:

Level— The core generates an IRQ whenever a specific input is high and interrupts are enabled for
that input in the interruptmask register.

Edge— The core generates an IRQ whenever a specific bit in the edge capture register is high and
interrupts are enabled for that bit in the interruptmask register.

When Generate IRQ is off, the interruptmask register does not exist.

Simulation

The Simulation page allows you to specify the value of the input ports during simulation. Turn on
Hardwire PIO inputs in test bench to set the PIO input ports to a certain value in the testbench, and
specify the value in Drive inputs to field.

Software Programming Model

This section describes the software programming model for the PIO core, including the register map and

software constructs used to access the hardware. For Nios® II processor users, Altera provides the HAL
system library header file that defines the PIO core registers. The PIO core does not match the generic
device model categories supported by the HAL, so it cannot be accessed via the HAL API or the ANSI C
standard library.

The Nios IT Embedded Design Suite (EDS) provides several example designs that demonstrate usage of
the PIO core. In particular, the count_binary.c example uses the PIO core to drive LEDs, and detect
button presses using PIO edge-detect interrupts.

Software Files

The PIO core is accompanied by one software file, altera_avalon_pio_regs.h. This file defines the core's
register map, providing symbolic constants to access the low-level hardware.

Register Map

PIO Core

An Avalon-MM master peripheral, such as a CPU, controls and communicates with the PIO core via the
four 32-bit registers, shown below. The table assumes that the PIO core's I/O ports are configured to a
width of n bits.

Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

11-6

. UG-01085
data Register 2016.06.17

Table 11-2: Register Map for the PIO Core

I TS N S I R

read access Data value currently on PIO inputs
0 data
write access w New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O
port. A value of 0 sets the direction to input;
1 sets the direction to output.

2 interruptmask (1) R/W IRQ enable/disable for each input port.
Setting a bit to 1 enables interrupts for the
corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

4 outset w Specifies which bit of the output port to set.
Outset value is not stored into a physical
register in the IP core. Hence it's value is not
reserve for future use.

5 outclear w Specifies which output bit to clear. Outclear
value is not stored into a physical register in
the IP core. Hence it's value is not reserve
for future use.

Table 11-2:

1. This register may not exist, depending on the hardware configuration. If a register is not

present, reading the register returns an undefined value, and writing the register has no effect.

2. If the option Enable bit-clearing for edge capture register is turned off, writing any value to

the edgecapture register clears all bits in the register. Otherwise, writing a 1 to a particular bit
in the register clears only that bit.

data Register

Reading from data returns the value present at the input ports if the PIO core hardware is configured to
input, or inout mode only. If the PIO core hardware is configured to output-only mode, reading from the
data register returns the value present at the output ports. Whereas, if the PIO core hardware is
configured to bidirectional mode, reading from data register returns value depending on the direction
register value, setting to 1 returns value present at the output ports, setting to 0 returns undefined value.

Writing to data stores the value to a register that drives the output ports. If the PIO core hardware is
configured in input-only mode, writing to data has no effect. If the PIO core hardware is in bidirectional
mode, the registered value appears on an output port only when the corresponding bit in the direction
register is set to 1 (output).

direction Register

The direction register controls the data direction for each PIO port, assuming the port is bidirectional.
When bit n in direction is set to 1, port n drives out the value in the corresponding bit of the data
register.

The direction register only exists when the PIO core hardware is configured in bidirectional mode. In
input-only, output-only and inout mode, the direction register does not exist. In this case, reading

Altera Corporation PIO Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

interruptmask Register 11-7

direction returns an undefined value, writing direction has no effect. The mode (input, output, inout
or bidirectional) is specified at system generation time, and cannot be changed at runtime.

After reset, all direction register bits are 0, so that all bidirectional I/O ports are configured as inputs. If
those PIO ports are connected to device pins, the pins are held in a high-impedance state. In bi-
directional mode, you will need to write to the direction register to change the direction of the PIO port
(0-input, 1-output).

interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for the corresponding PIO input port.
Interrupt behavior depends on the hardware configuration of the PIO core. See the Interrupt Behavior
section.

The interruptmask register only exists when the hardware is configured to generate IRQs. If the core
cannot generate IRQs, reading interruptmask returns an undefined value, and writing to interrupt-
mask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are disabled for all PIO ports.

edgecapture Register

Bit n in the edgecapture register is set to 1 whenever an edge is detected on input port n. An Avalon-MM
master peripheral can read the edgecapture register to determine if an edge has occurred on any of the
PIO input ports. If the edge capture register bit has been previously set, in_port toggling activity will not
change value.

If the option Enable bit-clearing for the edge capture register is turned off, writing any value to the
edgecapture register clears all bits in the register. Otherwise, writing a 1 to a particular bit in the register
clears only that bit.

The type of edge(s) to detect is fixed in hardware at system generation time. The edgecapture register
only exists when the hardware is configured to capture edges. If the core is not configured to capture
edges, reading from edgecapture returns an undefined value, and writing to edgecapture has no effect.

outset and outclear Register

You can use the outset and outclear registers to set and clear individual bits of the output port. For
example, to set bit 6 of the output port, write 0x40 to the outset register. Writing 0x08 to the outclear
register clears bit 3 of the output port.

These registers are only present when the option Enable individual bit set/clear output register is turned
on. Outset and outclear registers are not physical registers inside the IP core, hence the output port value
will only be affected by the current update outset value or current update outclear value only.

Interrupt Behavior

PIO Core

The PIO core outputs a single IRQ signal that can connect to any master peripheral in the system. The
master can read either the data register or the edgecapture register to determine which input port
caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is asserted whenever
corresponding bits in the data and interruptmask registers are 1. When the hardware is configured for
edge-sensitive interrupts, the IRQ is asserted whenever corresponding bits in the edgecapture and
interruptmask registers are 1. The IRQ remains asserted until explicitly acknowledged by disabling the
appropriate bit(s) in interruptmask, or by writing to edgecapture.

Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
11-8 Software Files 2016.06.17

Software Files

The PIO core is accompanied by the following software file. This file provide low-level access to the
hardware. Application developers should not modify the file.

« altera_avalon_pio_regs.h—This file defines the core's register map, providing symbolic constants to
access the low-level hardware. The symbols in this file are used by device driver functions.

Document Revision History

Table 11-3: Document Revision History

e e | s

December 2015 |2015.12.16 Updated "edgecapture Register" section

June 2015 2015.06.12 « Updated "Register Map" section

« Updated "data Register" section

« Updated "direction Register" section

» Updated "outset and outclear Register" section

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2013 | v13.1.0 Updated note (2) in Register map for PIO Core Table

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections

July 2010 v10.0.0 No change from previous release

November 2009 |91 No change from previous release

March 2009 v9.0.0 Added a section on new registers, outset and outclear

November 2008 |81 Changed to 8-1/2 x 11 page size. Added the description for Output
Port Reset Value and Simulation parameters

May 2008 v8.0.0 No change from previous release

Altera Corporation PIO Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Serial Peripheral Interface Core

2016.06.17

UG-01085 B subscribe () Send Feedback

Core Overview

The Avalon® Streaming (Avalon-ST) Serial Peripheral Interface (SPI) core is an SPI slave that allows data
transfers between Qsys systems and off-chip SPI devices via Avalon-ST interfaces. Data is serially
transferred on the SPI, and sent to and received from the Avalon-ST interface in bytes.

The SPI Slave to Avalon Master Bridge is an example of how this core is used.

For more information on the bridge, refer to Avalon-ST Serial Peripheral Interface Core.

Functional Description

Figure 12-1: System with an Avalon-ST SPI Core

sclk

Altera FPGA

mosi

SPI
Master miso
<

A\ A J

nSS

Interfaces

Avalon-ST
Seial
Peripheral
Interface
Core

Avalon-ST | ey

Avalon-ST (BEeN

System Interconnect Fabric

SPI
Clock

System
Clock

Red ofthe
Sygem

The serial peripheral interface is full-duplex and does not support backpressure. It supports SPI clock
phase bit, CPHA = 1, and SPI clock polarity bit, CPOL = 0.

Table 12-1: Properties of Avalon-ST Interfaces

T e T ey

Backpressure

Not supported.

Data Width

Data width = 8 bits; Bits per symbol = 8.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,

1O
9001:2008
Registered

product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134

JAITERAN

now part of Intel ‘

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Serial%20Peripheral%20Interface%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

12-2 Operation 2016.06.17
Channel Not supported.
Error Not used.
Packet Not supported.

For more information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

Operation

The Avalon-ST SPI core waits for the nSS signal to be asserted low, signifying that the SPI master is
initiating a transaction. The core then starts shifting in bits from the input signal mosi. The core packs the
bits received on the SPI to bytes and checks for the following special characters:

« Ox4a—Idle character. The core drops the idle character.
» 0x4d—Escape character. The core drops the escape character, and XORs the following byte with 0x20.

For each valid byte of data received, the core asserts the val id signal on its Avalon-ST source interface
and presents the byte on the interface for a clock cycle.

At the same time, the core shifts data out from the Avalon-ST sink to the output signal miso beginning
with from the most significant bit. If there is no data to shift out, the core shifts out idle characters
(0x4a). If the data is a special character, the core inserts an escape character (0x4d) and XORs the data
with 0x20.

The data shifts into and out of the core in the direction of MSB first.
Figure 12-2: SPI Transfer Protocol

(SéllF:OL =0) 7q/__/—_/—_/—_/—_/—_/__/_\ [
VoSIMso I I N N B B

WSO pin X X & X -
i O B B G N S O
nss a

SPI Transfer Protocol Notes:

o TL = The worst recovery time of sclk with respect with nss.
o TT = The worst hold time for MOS1 and M1SO data.
o TI=The minimum width of a reset pulse required by Altera FPGA families.

Timing
The core requires a lead time (TL) between asserting the nSS signal and the SPI clock, and a lag time (T'T)

between the last edge of the SPI clock and deasserting the nSS signal. The nSS signal must be deasserted
for a minimum idling time (TI) of one SPI clock between byte transfers. A TimeQuest SDC file (.sdc) is

Altera Corporation Avalon-ST Serial Peripheral Interface Core

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Serial%20Peripheral%20Interface%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Limitations 12-3

provided to remove false timing paths. The frequency of the SPI master’s clock must be equal to or lower
than the frequency of the core’s clock.

Limitations

Daisy-chain configuration, where the output line miso of an instance of the core is connected to the input
line mosi of another instance, is not supported.

Configuration

The parameter Number of synchronizer stages: Depth allows you to specify the length of
synchronization register chains. These register chains are used when a metastable event is likely to occur
and the length specified determines the meantime before failure. The register chain length, however,

affects the latency of the core.

For more information on metastability in Altera devices, refer to AN 42: Metastability in Altera Devices.

For more information on metastability analysis and synchronization register chains, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus Prime Handbook.

Document Revision History

Table 12-2: Document Revision History

I I S

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |9 10 Added a description to specify the shift direction.

March 2009 v9.0.0 Added description of a new parameter, Number of synchronizer
stages: Depth.

November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

Avalon-ST Serial Peripheral Interface Core

C] Send Feedback

Altera Corporation

ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Serial%20Peripheral%20Interface%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Single-Clock and Dual-Clock FIFO
Cores 1 3

2016.06.17

UG-01085 X subscribe C] Send Feedback

Avalon-ST Single-Clock and Dual-Clock FIFO Cores

Core Overview

The Avalon® Streaming (Avalon-ST) Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO
buffers which operate with a common clock and independent clocks for input and output ports
respectively. The FIFO cores are configurable, SOPC Builder-ready, and integrate easily into any SOPC
Builder-generated systems.

Functional Description

The following two figures show block diagrams of the Avalon-ST Single-Clock FIFO and Avalon-ST
Dual-Clock FIFO cores.

Figure 13-1: Avalon-ST Single Clock FIFO Core

TCS[

Avalon-MM
Slave

in Avalon-ST Avalon-ST
g 22 Single-Clak

Sink
FIFO

Avalon-ST
Data
Source

Avalon-ST Avalon-ST
Status Status
Source Source

almosl_fulli

almost_empty

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

13-2 Interfaces 2016.06.17

Figure 13-2: Avalon-ST Dual Clock FIFO Core

in_csr out_csr

Avalon-MM Avalon-MM
Slave Slave

Clock A Clock B

Interfaces

This section describes the interfaces implemented in the FIFO cores.

RL**For more information about Avalon interfaces, refer to the Avalon Interface Specifications.

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and source interfaces in
the dual-clock FIFO core are driven by different clocks.

Table 13-1: Properties of Avalon-ST Interfaces

T e T ey

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.
Error Configurable.

Packet Configurable.

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM interface, and the dual-
clock FIFO core to include an Avalon-MM interface in each clock domain. The Avalon-MM interface
provides access to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure the
almost-empty and almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes.

Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from which you can
obtain the FIFO buffer almost-full and almost empty statuses.

Altera Corporation Avalon-ST Single-Clock and Dual-Clock FIFO Cores

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Operating Modes 13-3

Operating Modes
The following lists the FIFO operating modes:

o Default mode—The core accepts incoming data on the in interface (Avalon-ST data sink) and
forwards it to the out interface (Avalon-ST data source). The core asserts the val id signal on the
Avalon-ST source interface to indicate that data is available at the interface.

 Store and forward mode—This mode only applies to the single-clock FIFO core. The core asserts the
valid signal on the out interface only when a full packet of data is available at the interface.

In this mode, you can also enable the drop-on-error feature by setting the drop_on_error register to 1.
When this feature is enabled, the core drops all packets received with the in_error signal asserted.

+ Cut-through mode— This mode only applies to the single-clock FIFO core. The core asserts the valid
signal on the out interface to indicate that data is available for consumption when the number of
entries specified in the cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and forward parameter to
include the csr interface (Avalon-MM slave). Set the cut_through_threshold register to 0 to enable
the store and forward mode; set the register to any value greater than 0 to enable the cut-through
mode. The non-zero value specifies the minimum number of FIFO entries that must be available
before the data is ready for consumption. Setting the register to 1 provides you with the default mode.

Fill Level

You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and status interface.
Turn on the Use fill level parameter (Use sink fill level and Use source fill level in the dual-clock FIFO
core) and read the Fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the latency of the clock
crossing logic, the fill levels reported in the input and output clock domains may be different at any given
instance. In both cases, the fill level is pessimistic for the clock domain; the fill level is reported high in the
input clock domain and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fy5x. This output stage is accounted for
when calculating the output fill level, but not when calculating the input fill level. Hence, the best measure
of the amount of data in the FIFO is given by the fill level in the output clock domain, while the fill level in
the input clock domain represents the amount of space available in the FIFO (Available space = FIFO
depth - input fill level).

Thresholds

You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO overflow and
underflow. This feature is only available in the single-clock FIFO core.

To use the thresholds, turn on the Use fill level, Use almost-full status, and Use almost-empty status
parameters. You can access the almost_full_threshold and almost_full_threshold registers via the
csr interface and set the registers to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and almost_empty
interfaces (Avalon-ST status source). The core asserts the almost_ful I signal when the fill level is equal
to or higher than the almost-full threshold. Likewise, the core asserts the almost_empty signal when the
fill level is equal to or lower than the almost-empty threshold.

Avalon-ST Single-Clock and Dual-Clock FIFO Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13-4

Parameters

Parameters

Table 13-2: Configurable Parameters

Bits per symbol | 1-32 These parameters determine the width of the FIFO.

Symbols per 1-32 FIFO width = Bits per symbol * Symbols per beat, where:

beat Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in a beat.

Error width 0-32 The width of the error signal.

FIFO depth 1-32 The FIFO depth. An output pipeline stage is added to the FIFO
to increase performance, which increases the FIFO depth by
one.

Use packets — Turn on this parameter to enable packet support on the Avalon-
ST data interfaces.

Channel width | 1-32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only

Use fill level

Turn on this parameter to include the Avalon-MM control and
status register interface.

Avalon-ST Dual Clock FIFO Only

Use sink fill
level

Turn on this parameter to include the Avalon-MM control and
status register interface in the input clock domain.

Use source fill
level

Turn on this parameter to include the Avalon-MM control and
status register interface in the output clock domain.

Write pointer | 2-8 The length of the write pointer synchronizer chain. Setting this
synchronizer parameter to a higher value leads to better metastability while
length increasing the latency of the core.

Read pointer 2-8 The length of the read pointer synchronizer chain. Setting this
synchronizer parameter to a higher value leads to better metastability.
length

Use Max — Turn on this parameter to specify the maximum channel
Channel number.

Max Channel 1-255 Maximum channel number.

UG-01085
2016.06.17

For more information on metastability in Altera devices, refer to AN 42: Metastability in Altera Devices.

For more information on metastability analysis and synchronization register chains, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus Prime Handbook.

Altera Corporation

Avalon-ST Single-Clock and Dual-Clock FIFO Cores

C] Send Feedback

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085) o 135
2016.06.17 Register Description 5

Register Description

The csr interface in the Avalon-ST Single Clock FIFO core provides access to registers. The table below
describes the registers.

Table 13-3: Register Description for Avalon-ST Single-Clock FIFO

Access Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are
unused.

1 Reserved — — Reserved for future use.

2 almost_full threshold RW FIFO Set this register to a value that indicates the

depth-1 FIFO butfter is getting full.

3 almost_empty_threshold RW 0 Set this register to a value that indicates the
FIFO bulffer is getting empty.

4 cut_through_threshold RW 0 0—FEnables store and forward mode.

>0—Enables cut-through mode and
specifies the minimum of entries in the
FIFO bulffer before the valid signal on the
Avalon-ST source interface is asserted.
Once the FIFO core starts sending the data
to the downstream component, it
continues to do so until the end of the
packet.

This register applies only when the Use
store and forward parameter is turned on.

5 drop_on_error RW 0 0—Disables drop-on error.
1—Enables drop-on error.

This register applies only when the Use
packet and Use store and forward
parameters are turned on.

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.
The table below describes the fill level.

Table 13-4: Register Description for Avalon-ST Dual-Clock FIFO

Access | Reset Description
Value
0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are unused.
1 threshold RW Almost-full threshold in the input port domain;
almost-empty threshold in the output port
domain.
Avalon-ST Single-Clock and Dual-Clock FIFO Cores Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

13-6 Document Revision History

UG-01085
2016.06.17

Document Revision History

Table 13-5: Document Revision History

I

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 Added description of the new features of the single-clock FIFO: store
and forward mode, cut-through mode, and drop on error.
Added parameters and registers.

November 2009 |9 10 No change from previous release.

March 2009 v9.0.0 Added description of new parameters, Write pointer synchronizer
length and Read pointer synchronizer length.

November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

Altera Corporation

Avalon-ST Single-Clock and Dual-Clock FIFO Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Single-Clock%20and%20Dual-Clock%20FIFO%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MDIO Core

2016.06.17

UG-01085 X subscribe C] Send Feedback

The Altera Management Data Input/Output (MDIO) IP core is a two-wire standard management
interface that implements a standardized method to access the external Ethernet PHY device management
registers for configuration and management purposes. The MDIO IP core is IEEE 802.3 standard
compliant.

To access each PHY device, the PHY register address must be written to the register space followed by the
transaction data. The PHY register addresses are mapped in the MDIO core’s register space and can be
accessed by the host processor via the Avalon® Memory-Mapped (Avalon-MM) interface. This IP core
can also be used with the Altera 10-Gbps Ethernet MAC to realize a fully manageable system.

Functional Description

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that allows Avalon-MM
master peripherals (such as a CPU) to communicate with the core and access the external PHY by reading
and writing the control and data registers. The system interconnect fabric connects the Avalon-MM
master and slave interface while a buffer connects the MDIO interface signals to the external PHY.

For more information about system interconnect fabric for Avalon-MM interfaces, refer to the System
Interconnect Fabric for Memory-Mapped Interfaces.

Figure 14-1: MDIO Core Block Diagram

Altera FPGA
clk >
reset
csr_read, mde |
)
Systen csr_wite mdio in
User | Inter- csrgaddress Avalon-M| MDIQ = mdio Extenal PHY
Logic [connegt ~—| Shve MDIO Core | Ports| mdio ou <
Fabric csrévgltedata Interface| =
52 __p -
csr_readdata] mdio_oen
32 N
_ Csr_waitrequept
<« MDIO Buffer
Connection

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20MDIO%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
14-2 MDIO Frame Format (Clause 45) 2016.06.17

MDIO Frame Format (Clause 45)

The MDIO core communicates with the external PHY device using frames. A complete frame is 64 bits
long and consists of 32-bit preamble, 14-bit command, 2-bit bus direction change, and 16-bit data. Each
bit is transferred on the rising edge of the management data clock (MDC). The PHY management
interface supports the standard MDIO specification (IEEE802.3 Ethernet Standard Clause 45).

Figure 14-2: MDIO Frame Format (Clause 45)

32 bits 2bits 2 bits 5 bits 5 bits 2 bits 16 bits 1 bit
I I I I I I If |
PRE ST oP PRIAD DEVAD A REGAD/Data Idle
7 \\ 7/ \\
| / \,
00| Addressl
01| Wite | Z0| Read
11| Read } 10| Address/vite

Table 14-1: MDIO Frame Field Descriptions—Clause 45

Field Description
Name

PRE Preamble. 32 bits of logical 1 sent prior to every transaction.

ST The start of frame for indirect access cycles is indicated by the <00> pattern. This pattern assures
a transition from the default one and identifies the frame as an indirect access.

OP The operation code field indicates the following transaction types:
00 indicates that the frame payload contains the address of the register to access.

01 indicates that the frame payload contains data to be written to the register whose address was
provided in the previous address frame.

11 indicates that the frame is a read operation.

The post-read-increment-address operation <10> is not supported in this frame.

PRTAD | The port address (PRTAD) is 5 bits, allowing 32 unique port addresses. Transmission is MSB to
LSB. A station management entity (STA) must have a prior knowledge of the appropriate port
address for each port to which it is attached, whether connected to a single port or to multiple
ports.

DEVAD | The device address (DEVAD) is 5 bits, allowing 32 unique MDIO manageable devices (MMDs) per
port. Transmission is MSB to LSB.

TA The turnaround time is a 2-bit time spacing between the device address field and the data field of
a management frame to avoid contention during a read transaction.

For a read transaction, both the STA and the MMD remain in a high-impedance state (Z) for the
first bit time of the turnaround. The MMD drives a 0 during the second bit time of the
turnaround of a read or postread-increment-address transaction.

For a write or address transaction, the STA drives a 1 for the first bit time of the turnaround and
a 0 for the second bit time of the turnaround.

Altera Corporation MDIO Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MDIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 MDIO Clock Generation 14-3

Field Description
Name

REGAD/ | The register address (REGAD) or data field is 16 bits. For an address cycle, it contains the address
of the register to be accessed on the next cycle. For the data cycle of a write frame, the field
contains the data to be written to the register. For a read frame, the field contains the contents of
the register. The first bit transmitted and received is bit 15.

Data

Idle | The idle condition on MDIO is a high-impedance state. All tri-state drivers are disabled and the
MMDs pullup resistor pulls the MDIO line to a one.

MDIO Clock Generation

The MDIO core’s MDC is generated from the Avalon-MM interface clock signal, clk. The MDC_DIVISOR
parameter specifies the division parameter. For more information about the parameter, refer to the
Parameter section.

The division factor must be defined such that the MDC frequency does not exceed 2.5 MHz.

Interfaces

The MDIO core consists of a single Avalon-MM slave interface. The slave interface performs Avalon-MM
read and write transfers initiated by an Avalon-MM master in the client application logic. The Avalon-
MM slave uses the waitrequest signal to implement backpressure on the Avalon-MM master for any
read or write operation which has yet to be completed.

For more information about Avalon-MM interfaces, refer to the Avalon Interface Specifications.

Operation

The MDIO core has bidirectional external signals to transfer data between the external PHY and the core.
Write Operation

Follow the steps below to perform a write operation.

1. Issue a write to the device register at address offset 0x21 to configure the device, port, and register
addresses of the PHY.

2. Issue a write to the MDIO_ACCESS register at address offset 0x20 to generate an MDIO frame and write
the data to the selected PHY device’s register.

Read Operation

Follow the steps below to perform a read operation.

MDIO Core Altera Corporation

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MDIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

14-4 Parameter

UG-01085
2016.06.17

1. Issue a write to the device register at address offset 0x21 to configure the device, port, and register
addresses of the PHY.

2. Issue a read to the MDIO_ACCESS register at address offset 0x20 to read the selected PHY device’s

register.

Parameter

Table 14-2: Configurable Parameter

DIVISOR

8-64

The host clock divisor provides the division factor for the
clock on the Avalon-MM interface to generate the preferred
MDIO clock (MDC). The division factor must be defined
such that the MDC frequency does not exceed 2.5 MHz.

Formula:
For example, if the Avalon-MM interface clock source is

100 MHz and the desired MDC frequency is 2.5 MHz, specify
a value of 40 for the MDC_DIVISOR.

Configuration Registers

An Avalon-MM master peripheral, such as a CPU, controls and communicates with the MDIO core via
32-bit registers, shown in the Register Map table.

Table 14-3: Register Map

Address Bit(s) Access Description
Offset Mode

0x00- 31:0 Reserved Reserved for future use.
Ox1F
0x20 (1) |31:0 |MDIO_ACCESS RW Performs a read or write of 32-bit data to the external
PHY device. The addresses of the external PHY device’s
register, device, and port are specified in address offset
0x21.
4:0 MDI10_DEVAD RW Contains the device address of the PHY.
7:5 Reserved RW Unused.
0x21(2) |12:8 |MDIO_PRTAD RW Contains the port address of the PHY.
15:13 |Reserved RW Unused.
31:16 |MDIO_REGAD RW | Contains the register address of the PHY.

Altera Corporation

MDIO Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MDIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Document Revision History 14-5
Address Bit(s) Access Description
Offset Mode
Table 14-3 :

1. The byte address for this register is 0x84.
2. The byte address for this register is 0x80.

Document Revision History

Table 14-4: Document Revision History

I I

July 2014

2014.07.24 Removed mention of SOPC Builder, updated to Qsys
December 2010 | 10.1.0 Revised the register map address offset.
July 2010 v10.0.0 Initial release.

MDIO Core

Altera Corporation
D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20MDIO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

On-Chip FIFO Memory Core 1

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The on-chip FIFO memory core buffers data and provides flow control in an Qsys system. The core can
operate with a single clock or with separate clocks for the input and output ports, and it does not support
burst read or write.

The input interface to the on-chip FIFO memory core may be an Avalon® Memory Mapped (Avalon-
MM) write slave or an Avalon Streaming (Avalon-ST) sink. The output interface can be an Avalon-ST
source or an Avalon-MM read slave. The data is delivered to the output interface in the same order that it
was received at the input interface, regardless of the value of channel, packet, frame, or any other signals.

In single-clock mode, the on-chip FIFO memory core includes an optional status interface that provides
information about the fill level of the FIFO core. In dual-clock mode, separate, optional status interfaces
can be included for the input and output interfaces. The status interface also includes registers to set and
control interrupts.

Device drivers are provided in the HAL system library allowing software to access the core using ANSI C.

Functional Description

The on-chip FIFO memory core has four configurations:

o Avalon-MM write slave to Avalon-MM read slave
o Avalon-ST sink to Avalon-ST source

o Avalon-MM write slave to Avalon-ST source

o Avalon-ST sink to Avalon-MM read slave

In all configurations, the input and output interfaces can use the optional backpressure signals to

prevent underflow and overflow conditions. For the Avalon-MM interface, backpressure is

implemented using the waitrequest signal. For Avalon-ST interfaces, backpressure is implemented
using the ready and val id signals. For the on-chip FIFO memory core, the delay between the sink

asserts ready and the source drives valid data is one cycle.

Avalon-MM Write Slave to Avalon-MM Read Slave

In this configuration, the input is a zero-address-width Avalon-MM write slave. An Avalon-MM write
master pushes data into the FIFO core by writing to the input interface, and a read master (possibly the
same master) pops data by reading from its output interface. The input and output data must be the same

width.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1'2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered

product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20On-Chip%20FIFO%20Memory%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. UG-01085
15-2 Avalon-ST Sink to Avalon-ST Source 2016.06.17

If Allow backpressure is turned on, the waitrequest signal is asserted whenever the data_in master tries
to write to a full FIFO buffer. waitrequest is only deasserted when there is enough space in the FIFO
buffer for a new transaction to complete. waitrequest is asserted for read operations when there is no
data to be read from the FIFO buffer, and is deasserted when the FIFO bulffer has data.

Figure 15-1: FIFO with Avalon-MM Input and Output Interfaces

system interconne ct fabric

< >
< >
Input Status I/F Output Status I/F
(optiona l) (optiona I)

on-Chip FIFO
Memory

Wi Rd
Input data]]]]]]]]]]]]]]]] Output data
Avalon-MM Slave Port

Avalon-ST Sink to Avalon-ST Source

This configuration has streaming input and output interfaces as illustrated in the figure below. You can
parameterize most aspects of the Avalon-ST interfaces including the bits per symbol, symbols per beat,
and the width of error and channel signals. The input and output interfaces must be the same width. If
Allow backpressure is turned on, both interfaces use the ready and val id signals to indicate when space
is available in the FIFO core and when valid data is available.

For more information about the Avalon-ST interface protocol, refer to the Avalon Interface Specifica-
tions.

Figure 15-2: FIFO with Avalon-ST Input and Output Interfaces

System Interconnect Fab ric

< >
< >
Input Status I/F Output Status I/F
(optional) (optiona Iy

On-Chip FIFO
Memory

Streaming

]]]]]]]]]IH]]]] ="
Avalon-ST Sink

Bl Avalon-ST Source

(B Avalon-MMSlave Port

Avalon-MM Write Slave to Avalon-ST Source

In this configuration, the input is an Avalon-MM write slave with a width of 32 bits as shown in the FIFO
with Avalon-MM Input Interface and Avalon-ST Output Interface figure below. The Avalon-ST output
(source) data width must also be 32 bits. You can configure output interface parameters, including: bits

Altera Corporation On-Chip FIFO Memory Core

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Avalon-MM Write Slave to Avalon-ST Source 15-3

per symbol, symbols per beat, and the width of the channel and error signals. The FIFO core performs
the endian conversion to conform to the output interface protocol.

The signals that comprise the output interface are mapped into bits in the Avalon address space. If Allow
backpressure is turned on, the input interface asserts waitrequest to indicate that the FIFO core does
not have enough space for the transaction to complete.

Figure 15-3: FIFO with Avalon-MM Input Interface and Avalon-ST Output Interface

system interconne ct fabric

< >
< >
Input Statu s I/F Output Status I/F
(optional) (optional)

On-Chip FIFO
Memory
Streaming

Input Data]]]]]]]]]]]]]]]] Output Data

Avalon-MM Slave Port
Avalon-ST Source

Table 15-1: Bit Field

Offset |31 ‘ ‘ ‘ ‘ ‘24 23 ‘ ‘19 ‘18 16 |15 13‘12‘ ‘ ‘8 7‘ ‘ ‘4‘3 ‘2 ‘1 ‘0

base + | Symbol 3 Symbol 2 Symbol 1 Symbol 0

0

base + |reserved reserved error |reserve |channel |reserved |empt E |S

1 d y 00
PP

Table 15-2: Memory Map

I R S,

31:0 SYMBOL_O, Packet data. The value of the Symbols per beat parameter specifies
SYMBOL_1, the number of fields in this register; Bits per symbol specifies the
SYMBOL_2 .. width of each field.
SYMBOL_n
On-Chip FIFO Memory Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
15-4 Avalon-ST Sink to Avalon-MM Read Slave 2016.06.17

N R O S

The value of the startofpacket signal.

1 EOP The value of the endofpacket signal.

6:2 EMPTY The value of the empty signal.

7 — Reserved.

15:8 CHANNEL The value of the channel signal. The number of bits occupied

1 corresponds to the width of the signal. For example, if the width of

the channel signal is 5, bits 8 to 12 are occupied and bits 13 to 15 are
unused.

23:16 |ERROR The value of the error signal. The number of bits occupied

corresponds to the width of the signal. For example, if the width of
the error signal is 3, bits 16 to 18 are occupied and bits 19 to 23 are
unused.

31:24 — Reserved.

If Enable packet data is turned off, the Avalon-MM write master writes all data at address offset 0
repeatedly to push data into the FIFO core.

If Enable packet data is turned on, the Avalon-MM write master starts by writing the SOP, ERROR
(optional), CHANNEL (optional), EOP, and EMPTY packet status information at address offset 1. Writing to
address offset 1 does not push data into the FIFO core. The Avalon-MM master then writes packet data to
address offset 0 repeatedly, pushing 8-bit symbols into the FIFO core. Whenever a valid write occurs at
address offset 0, the data and its respective packet information is pushed into the FIFO core. Subsequent
data is written at address offset 0 without the need to clear the SOP field. Rewriting to address offset 1 is
not required each time if the subsequent data to be pushed into the FIFO core is not the end-of-packet
data, as long as ERROR and CHANNEL do not change.

At the end of each packet, the Avalon-MM master writes to the address at offset 1 to set the EOP bit to 1,
before writing the last symbol of the packet at offset 0. The write master uses the empty field to indicate
the number of unused symbols at the end of the transfer. If the last packet data is not aligned with the
symbols per beat, the EMPTY field indicates the number of empty symbols in the last packet data. For
example, if the Avalon-ST interface has symbols per beat of 4, and the last packet only has 3 symbols, the
empty field will be 1, indicating that one symbol (the least significant symbol in the memory map) is
empty.

Avalon-ST Sink to Avalon-MM Read Slave

In this configuration seen in the figure below, the input is an Avalon-ST sink and the output is an Avalon-
MM read slave with a width of 32 bits. The Avalon-ST input (sink) data width must also be 32 bits. You
can configure input interface parameters, including: bits per symbol, symbols per beat, and the width of
the channel and error signals. The FIFO core performs the endian conversion to conform to the output
interface protocol.

An Avalon-MM master reads the data from the FIFO core. The signals are mapped into bits in the Avalon
address space. If Allow backpressure is turned on, the input (sink) interface uses the ready and valid
signals to indicate when space is available in the FIFO core and when valid data is available. For the
output interface, waitrequest is asserted for read operations when there is no data to be read from the
FIFO core. It is deasserted when the FIFO core has data to send. The memory map for this configuration
is exactly the same as for the Avalon-MM to Avalon-ST FIFO core. See the for Memory Map table for
more information.

Altera Corporation On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Status Interface 15-5

Figure 15-4: FIFO with Avalon-ST Input and Avalon-MM Output

system interconnect fab ric

< >
< >
Input Status I/F Output Status I/F
(optiona) (optional)

On-Chip FIFO
. Memory
Streaming

Input Data]]]]]]]]]]]]]]]] Output Data

Avalon-MM Slave Port
Avalon-ST Sink

If Enable packet data is turned off, read data repeatedly at address offset 0 to pop the data from the FIFO
core.

If Enable packet data is turned on, the Avalon-MM read master starts reading from address offset 0. If
the read is valid, that is, the FIFO core is not empty, both data and packet status information are popped
from the FIFO core. The packet status information is obtained by reading at address offset 1. Reading
from address offset 1 does not pop data from the FIFO core. The ERROR, CHANNEL, SOP, EOP and EMPTY
fields are available at address offset 1 to determine the status of the packet data read from address offset 0.

The EMPTY field indicates the number of empty symbols in the data field. For example, if the Avalon-ST
interface has symbols-per-beat of 4, and the last packet data only has 1 symbol, the empty field is 3 to
indicate that 3 symbols (the 3 least significant symbols in the memory map) are empty.

Status Interface

The FIFO core provides two optional status interfaces, one for the master writing to the input interface
and a second for the read master reading from the output interface. For FIFO cores that operate in a
single domain, a single status interface is sufficient to monitor the status of the FIFO core. In the dual
clocking scheme, a second status interface using the output clock is necessary to accurately monitor the
status of the FIFO core in both clock domains.

Clocking Modes

When single-clock mode is used, the FIFO core being used is SCFIFO. When dual-clock mode is chosen,
the FIFO core being used is DCFIFO. In dual-clock mode, input data and write-side status interfaces use
the write side clock domain; the output data and read-side status interfaces use the read-side clock
domain.

Configuration

The following sections describe the available configuration options.

FIFO Settings

On-Chip FIFO Memory Core

The following sections outline the settings that pertain to the FIFO core as a whole.

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
15-6 Interface Parameters 2016.06.17

Depth

Depth indicates the depth of the FIFO buffer, in Avalon-ST beats or Avalon-MM words. The default
depth is 16. When dual clock mode is used, the actual FIFO depth is equal to depth-3. This is due to clock
crossing and to avoid FIFO overflow.

Clock Settings

The two options are Single clock mode and Dual clock mode. In Single clock mode, all interface ports
use the same clock. In Dual clock mode, input data and input side status are on the input clock domain.
Output data and output side status are on the output clock domain.

Status Port

The optional status ports are Avalon-MM slaves. To include the optional input side status interface, turn
on Create status interface for input on the Qsys MegaWizard. For FIFOs whose input and output ports
operate in separate clock domains, you can include a second status interface by turning on Create status
interface for output. Turning on Enable IRQ for status ports adds an interrupt signal to the status ports.

FIFO Implementation

This option determines if the FIFO core is built from registers or embedded memory blocks. The default
is to construct the FIFO core from embedded memory blocks.

Interface Parameters

The following sections outline the options for the input and output interfaces.

Input

Available input interfaces are Avalon-MM write slave and Avalon-ST sink.

Output

Available output interfaces are Avalon-MM read slave and Avalon-ST source.

Allow Backpressure

When Allow backpressure is on, an Avalon-MM interface includes the waitrequest signal which is
asserted to prevent a master from writing to a full FIFO buffer or reading from an empty FIFO buffer. An
Avalon-ST interface includes the ready and valid signals to prevent underflow and overflow conditions.

Avalon-MM Port Settings
Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other, the data width is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths other than 32 bits, be careful of
potential overflow and underflow conditions.

Altera Corporation On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Software Programming Model 15-7

Avalon-ST Port Settings
The following parameters allow you to specify the size and error handling of the Avalon-ST port or ports:

« Bits per symbol

« Symbols per beat
« Channel width

o Error width

If the symbol size is not a power of two, it is rounded up to the next power of two. For example, if the
bits per symbol is 10, the symbol will be mapped to a 16-bit memory location. With 10-bit symbols,
the maximum number of symbols per beat is two.

Enable packet data provides an option for packet transmission.

Software Programming Model

The following sections describe the software programming model for the on-chip FIFO memory core,
including the register map and software declarations to access the hardware. For Nios II processor users,
Altera provides HAL system library drivers that enable you to access the on-chip FIFO memory core
using its HAL APIL.

HAL System Library Support

The Altera-provided driver implements a HAL device driver that integrates into the HAL system library
for Nios II systems. HAL users should access the on-chip FIFO memory via the familiar HAL API, rather
than accessing the registers directly.

Software Files

Altera provides the following software files for the on-chip FIFO memory core:

« altera_avalon_fifo_regs.h—This file defines the core's register map, providing symbolic constants to
access the low-level hardware.

« altera_avalon_fifo_util.h—This file defines functions to access the on-chip FIFO memory core
hardware. It provides utilities to initialize the FIFO, read and write status, enable flags and read events.

« altera_avalon_fifo.h—This file provides the public interface to the on-chip FIFO memory
« altera_avalon_fifo_util.c—This file implements the utilities listed in altera_avalon_fifo_util.h.

Programming with the On-Chip FIFO Memory

This section describes the low-level software constructs for manipulating the on-chip FIFO memory core
hardware. The table below lists all of the available functions.

Table 15-3: On-Chip FIFO Memory Functions

altera_avalon_fifo_init(Q) Initializes the FIFO.

altera_avalon_fifo_read_status() Returns the integer value of the specified bit of
the status register. To read all of the bits at once,
use the ALTERA_AVALON_FIFO_STATUS_ALL mask.

On-Chip FIFO Memory Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15-8 Software Control

altera_avalon_fifo_read_ienable()

Returns the value of the specified bit of the
interrupt enable register. To read all of the bits at
once, use the ALTERA_AVALON_FIFO_EVENT_ALL
mask.

altera_avalon_fifo_read_almostfull)

Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty()

Returns the value of the almostempty register.

altera_avalon_fifo_read_event()

Returns the value of the specified bit of the event
register. All of the event bits can be read at once
by using the ALTERA_AVALON_FIFO_STATUS_ALL
mask.

altera_avalon_fifo_read _level ()

Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event()

Clears the specified bits and the event register and
performs error checking.

altera_avalon_fifo_write_ienable()

Writes the specified bits of the interruptenable
register and performs error checking.

altera_avalon_fifo_write_almostfull

Writes the specified value to the almostfull
register and performs error checking.

altera_avalon_fifo_write_
almostempty ()

Writes the specified value to the almostempty
register and performs error checking.

altera_avalon_fifo_write_fifo()

Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info()

Writes the packet status information to the
write_address. Only valid when the Enable
packet data option is turned on.

altera_avalon_fifo_read_fifo()

Reads data from the specified read_address.

altera_avalon_fifo_read__other_info()

Reads the packet status information from the
specified read_address. Only valid when the
Enable packet data option is turned on.

Software Control

UG-01085
2016.06.17

The table below provides the register map for the status register. The layout of status register for the

input and output interfaces is identical.

Table 15-4: FIFO Status Register Memory Map

offset |31 \ \ \ \ ‘24 \23 \ \ \ \ ‘16 \15 \ \ \ \ \ ‘8‘7‘6 5‘4\3\2\1\0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interrupt
enable

base + 4 |almostfull

Altera Corporation

On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Software Control 15-9

base +5 |almostempty

The table below outlines the use of the various fields of the

Table 15-5: FIFO Status Field Descriptions

I

fill_level RO | The instantaneous fill level of the FIFO, provided in units of symbols for
a FIFO with an Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO | A 6-bit register that shows the FIFO’s instantaneous status. See Status
Bit Field Description Table for the meaning of each bit field.

event RW1 | A 6-bit register with exactly the same fields as i_status. When a bit in

C the i_status register is set, the same bit in the event register is set. The

bit in the event register is only cleared when software writes a 1 to that
bit.

interrupten- |RW | A 6-bit interrupt enable register with exactly the same fields as the

able event and i_status registers. When a bit in the event register

transitions from a 0 to a 1, and the corresponding bit in interrupten-
able is set, the master Is interrupted.

almostfull RW | A threshold level used for interrupts and status. Can be written by the
Avalon-MM status master at any time. The default threshold value for
DCFIFO is Depth-4. The default threshold value for SCFIFO is Depth-1.
The valid range of the threshold value is from 1 to the default. 1 is used
when attempting to write a value smaller than 1. The default is used
when attempting to write a value larger than the default.

almostempty RW | A threshold level used for interrupts and status. Can be written by the
Avalon-MM status master at any time. The default threshold value for
DCFIFO is 1. The default threshold value for SCFIFO is 1. The valid
range of the threshold value is from 1 to the maximum allowable
almostfull threshold. 1 is used when attempting to write a value
smaller than 1. The maximum allowable is used when attempting to
write a value larger than the maximum allowable.

status register.

Table 15-6: Status Bit Field Descriptions

I

0 |FULL Has a value of 1 if the FIFO is currently full.

1 EMPTY Has a value of 1 if the FIFO is currently empty.

2 |ALMOSTFULL Has a value of 1 if the fill level of the FIFO is equal or greater than the
almostfull value.

3 | ALMOSTEMPTY | Has a value of 1 if the fill level of the FIFO is less or equal than the
almostempty value.

4 | OVERFLOW Is set to 1 for 1 cycle every time the FIFO overflows. The FIFO overflows
when an Avalon write master writes to a full FIFO. OVERFLOW is only
valid when Allow backpressure is off.

On-Chip FIFO Memory Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

15-10 Software Control 2016.06.17
5 | UNDERFLOW Is set to 1 for 1 cycle every time the FIFO underflows. The FIFO

underflows when an Avalon read master reads from an empty FIFO.
UNDERFLOW is only valid when Allow backpressure is off.

These fields are identical to those in the status register and are set at the same time; however, these fields
are only cleared when software writes a one to clear (W1C). The event fields can be used to determine if a
particular event has occurred.

Table 15-7: Event Bit Field Descriptions

st | hame | ipion

0 E_FULL Has a value of 1 if the FIFO has been full and the bit has not been
cleared by software.

1 |E_EMPTY Has a value of 1 if the FIFO has been empty and the bit has not been
cleared by software.

2 |E_ALMOSTFULL Has a value of 1 if the fill level of the FIFO has been greater than the
almostfull threshold value and the bit has not been cleared by
software.

3 E_ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO has been less than the
almostempty value and the bit has not been cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit has not been
cleared by software.

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit has not been
cleared by software.

The table below provides a mask for the six STATUS fields. When a bit in the event register transitions
from a zero to a one, and the corresponding bit in the interruptenable register is set, the master is
interrupted.

Table 15-8: InterruptEnable Bit Field Descriptions

I T T

0 |IE_FULL Enables an interrupt if the FIFO is currently full.

1 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

2 | IE_ALMOSTFULL Enables an interrupt if the fill level of the FIFO is greater than the
value of the almostful I register.

3 | IE_ALMOSTEMPTY | Enables an interrupt if the fill level of the FIFO is less than the value of
the almostempty register.

4 | 1E_OVERFLOW Enables an interrupt if the FIFO overflows. The FIFO overflows when
an Avalon write master writes to a full FIFO.
5 | IE_UNDERFLOW Enables an interrupt if the FIFO underflows. The FIFO underflows
when an Avalon read master reads from an empty FIFO.
6 |ALL Enables all 6 status conditions to interrupt.
Altera Corporation On-Chip FIFO Memory Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Software Example 15-11

Macros to access all of the registers are defined in altera_avalon_fifo_regs.h. For example, this file
includes the following macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG 0
#define ALTERA_AVALON_FIFO_STATUS_REG 1
#define ALTERA_AVALON_FIFO_EVENT_REG 2
#define ALTERA_AVALON_FIFO_IENABLE REG 3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG 4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG 5

For a complete list of predefined macros and utilities to access the on-chip FIFO hardware, see: <install_
dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL\inc\

alatera_avalon_fifo.h and <install_dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL
\inc\

alatera_avalon_fifo_util.h.

Software Example

//1Includes

#include "altera_avalon_fifo_regs.h"

#include "altera_avalon_fifo_util_h"

#include "system.h"

#include "sys/alt_irq.h"

#include <stdio.h>

#include <stdlib.h>

#define ALMOST_EMPTY 2

#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5
volatile int input_fifo_wrclk_irg_event;

void print_status(alt_u32 control_base_address)

{

printf("-—————--— \n'");

printf(""'LEVEL = %u\n', altera_avalon_fifo_read_level (control_base_address));
printf(""'STATUS = %u\n", altera_avalon_fifo_read_status(control_base_address,
ALTERA_AVALON_FIFO_STATUS_ALL));

printf(""EVENT = %u\n', altera_avalon_fifo_read_event(control_base_address,
ALTERA_AVALON_FIFO_EVENT_ALL));

printf(""1ENABLE = %u\n", altera_avalon_fifo_read_ienable(control_base_ address,
ALTERA_AVALON_FIFO_IENABLE_ALL));

printf(""ALMOSTEMPTY = %u\n",
altera_avalon_fifo_read_almostempty(control_base_address));
printf(""ALMOSTFULL = %u\n\n",
altera_avalon_fifo_read_almostfull(control_base address));

static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)

/* Cast context to input_fifo_wrclk_irg_event"s type. It is important
* to declare this volatile to avoid unwanted compiler optimization.

*/

volatile int* input_fifo_wrclk_irg_event_ptr = (volatile int*) context;
/* Store the value in the FIFO"s irq history register in *context. */
*input_fifo_wrclk _irg_event_ptr =
altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE, ALTERA_AVALON_FIFO_EVENT_ALL);
printf(""Interrupt Occurs for %#x\n', INPUT_FIFO_IN_CSR_BASE);
print_status(INPUT_FIFO_IN_CSR_BASE);

/* Reset the FIFO"s IRQ History register. */
altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE,
ALTERA_AVALON_FIFO_EVENT_ALL);

3
/* Initialize the fifo */
static int init_input_fifo_wrclk _control()

{
int return_code = ALTERA AVALON_FIFO_OK;

On-Chip FIFO Memory Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15-12

On-Chip FIFO Memory API

UG-01085
2016.06.17

/* Recast the IRQ History pointer to match the alt_irg_register() function
* prototype. */

void* input_fifo_wrclk_irg_event_ptr =
/* Enable all
/* Clear event register, set enable all

(void*) &input_fifo_wrclk_irqg_event;
interrupts. */
irq, set almostempty and

almostfull threshold */

return_code =

altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,

0, // Disabled interrupts

ALMOST_EMPTY,

ALMOST_FULL);

/* Register the interrupt handler. */

alt_irg_register(INPUT_FIFO_IN_CSR_IRQ,
input_Ffifo_wrclk_irqg_event_ptr, handle_input_fifo_wrclk_interrupts);
return return_code;

}

On-Chip FIFO Memory API

This section describes the application programming interface (API) for the on-chip FIFO memory core.

altera_avalon_fifo_init()

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable, alt_
u32 emptymark, alt_u32 fullmark)

Thread-safe: | No.

Available from | No.

ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
ienable—the value to write to the interruptenable register
emptymark—the value for the almost empty threshold level
ful Imark—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_
EVENT_CLEAR_ERROR for clear errors, ALTERA_AVALON_FIFO_IENABLE WRITE_
ERROR for interrupt enable write errors, ALTERA_AVALON_FIFO_THRESHOLD_
WRITE_ERROR for errors writing the almostfull and almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the

almostfull register and almostempty registers.

altera_avalon_fifo _read_status()

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32 mask)
Thread-safe: | No.
Available from | No.

ISR:

Include:

<altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Altera Corporation

On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 altera_avalon_fifo_read_ienable()
Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the status register
Returns: Returns the masked bits of the addressed register.
Description: | Gets the addressed register bits—the AND of the value of the addressed register

and the mask.

altera_avalon_fifo _read_ienable()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt u32 mask)
Thread-safe: | No.
Available from | No.

ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: | address—the base address of the FIFO control slave

mask—masks the read value from the interruptenable register
Returns: Returns the logical AND of the interruptenable register and the mask.
Description: | Gets the logical AND of the interruptenable register and the mask.

altera_avalon_fifo read almostfull()

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)
Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostful I register.

Description: | Gets the value of the almostful I register.

altera_avalon

fifo_read_almostempty()

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)
Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

On-Chip FIFO Memory Core

C] Send Feedback

Altera Corporation

15-13

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15-14

altera_avalon_fifo_read_event()

UG-01085
2016.06.17

Description:

Gets the value of the almostempty register.

altera_avalon

fifo_read_event()

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32 mask)
Thread-safe: | No.
Available No.
from ISR:
Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: | address—the base address of the FIFO control slave
mask—masks the read value from the event register
Returns: Returns the logical AND of the event register and the mask.
Description: | Gets the logical AND of the event register and the mask. To read single bits of the

event register use the single bit masks, for example: ALTERA_AVALON_FIFO_FIFO_
EVENT_F_MSK. To read the entire event register use the full mask: ALTERA_
AVALON_FIFO_EVENT_ALL.

altera_avalon_fifo_read level()

Prototype: int altera_avalon_fifo_read_level (alt_u32 address)
Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: address—the base address of the FIFO control slave
Returns: Returns the fill level of the FIFO.

Description: | Gets the fill level of the FIFO.

altera_avalon_fifo clear_event()

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32 mask)
Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

mask—the mask to use for bit-clearing (1 means clear this bit, 0 means do not
clear)

Altera Corporation

On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

altera_avalon_fifo_write_ienable()
Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_
EVENT_CLEAR_ERROR if unsuccessful.
Description: | Clears the specified bits of the event register.

altera_avalon

fifo_write_ienable()

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32
mask)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the value to write to the interruptenable register. See altera_avalon_
fifo_regs.h for individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFQ_OK) if successful, ALTERA_AVALON_FIFO_
IENABLE_WRITE_ERROR if unsuccessful.

Description: | Writes the specified bits of the interruptenable register.

altera_avalon_fifo_write_almostfull()

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address, alt_u32
data)

Thread-safe: |No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_
THRESHOLD_WRITE_ERROR if unsuccessful.

Description: | Writes data to the almostful I register.

altera_avalon_fifo_write_almostempty()

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address, alt_u23
data)

Thread-safe: |No.

Available No.

from ISR:

On-Chip FIFO Memory Core

C] Send Feedback

Altera Corporation

15-15

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15-16 altera_avalon_write_fifo()
Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>
Parameters: address—the base address of the FIFO control slave
data—the value for the almost empty threshold level
Returns: Returns 0 (ALTERA_AVALON_FI1FO_OK) if successful, ALTERA_AVALON_FIFO_
THRESHOLD_WRITE_ERROR if unsuccessful.
Description: | Writes data to the almostempty register.

altera_avalon_write_fifo()

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt u32 ctrl_
address, alt_u32 data)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the value to write to address offset 0 for Avalon-MM to Avalon-ST
transfers, the value to write to the single address available for Avalon-MM to
Avalon-MM transfers. See the Avalon Interface Specifications section for the
data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFQ_OK) if successful, ALTERA_AVALON_FIFO_FULL
if unsuccessful.

Description: | Writes data to the specified address if the FIFO is not full.

altera_avalon_write_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address, alt_u32
ctrl_address, alt_u32 data)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave

ctrl_address—the base address of the FIFO control slave

data—the packet status information to write to address offset 1 of the Avalon
interface. See the Avalon Interface Specifications section for the ordering of the
packet status information.

Altera Corporation

UG-01085
2016.06.17

On-Chip FIFO Memory Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 altera_avalon_fifo_read_fifo()
Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL
if unsuccessful.
Description: | Writes the packet status information to the write_address. Only valid when

Enable packet data is on.

altera_avalon

fifo_read_fifo()

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address, alt_u32
ctrl_address)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave
ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: | Gets the data addressed by read_address.

R**altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Returns the packet status information from address offset 1 of the Avalon
interface. See the Avalon Interface Specifications section for the ordering of the
packet status information.

Description: | Reads the packet status information from the specified read_address. Only

valid when Enable packet data is on.

Document Revision History

Table 15-9: Document Revision History

e e | s

July 2014

2014.07.24 Removed mention of SOPC Builder, updated to Qsys

15-17

December 2010

v10.1.0
Builder”, and “Referenced Documents” sections.

Removed the “Device Support”, “Instantiating the Core in SOPC

On-Chip FIFO Memory Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

15-18 Document Revision History

UG-01085
2016.06.17

I I S

July 2010 v10.0.0 Revised the description of the memory map.

November 2009 |91 Added description to the core overview.

March 2009 v9.0.0 Updated the description of the function altera_avalon_fifo_read_
status().

November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 No change from previous release.

Altera Corporation

On-Chip FIFO Memory Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20On-Chip%20FIFO%20Memory%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Multi-Channel Shared Memory FIFO
Core 1 6

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The Avalon Streaming (Avalon-ST) Multi-Channel Shared Memory FIFO core is a FIFO bufter with
Avalon-ST data interfaces. The core, which supports up to 16 channels, is a contiguous memory space
with dedicated segments of memory allocated for each channel. Data is delivered to the output interface in
the same order it was received on the input interface for a given channel.

The example below shows an example of how the core is used in a system. In this example, the core is
used to buffer data going into and coming from a four-port Triple Speed Ethernet MegaCore function. A
processor, if used, can request data for a particular channel to be delivered to the Triple Speed Ethernet
MegaCore function.

Figure 16-1: Multi-Channel Shared Memory FIFO in a System—An Example

Altera
FPGA
Multi-Channel
Shared Memoy FIFO Multi-port
(Receive FIFO buffer) Triple Speed Ethenet

Fort 0

[

Channel 1 —{| Port1 Fom
D a—
<«

Channel 0

Reg ofthe
Sysgem

Demux
Mux

Network
Port 2
Port 3

Channel 2

Channel 3

T

Processor/
Scheduler

System Interconnect Fabric

Performance and Resource Utilization

This section lists the resource utilization and performance data for various Altera device families. The
estimates are obtained by compiling the core using the Quartus Prime software.

The table below shows the resource utilization and performance data for a Stratix II GX device
(EP2SGX130GF150814).

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

e as UG-01085
16-2 Performance and Resource Utilization 2016.06.17

Table 16-1: Memory Utilization and Performance Data for Stratix Il GX Devices

ool Memory Blocks fimax
Channels ALUTSs -
4 559 382 0 0 1 > 125
12 1617 1028 0 0 6 > 125

The table below shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore function in Stratix IV devices is similar to
Stratix IIT devices.

Table 16-2: Memory Utilization and Performance Data for Stratix Il Devices

Logic Memory Blocks fvax
Channels ALUTSs)
557 37 0 0

345 > 125
12 1741 1028 0 24 0 > 125

The table below shows the resource utilization and performance data for a Cyclone III device
(EP3C120F78017).

Table 16-3: Memory Utilization and Performance Data for Cyclone Il Devices

Channels Total Logic Total Registers Memory fuvax
Elements MoK (MH2)
4 711 346 37 > 125
12 2284 1029 412 > 125
Altera Corporation Avalon-ST Multi-Channel Shared Memory FIFO Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Functional Description 16-3

Functional Description
Figure 16-2: Avalon-ST Multi-Channel Shared Memory FIFO Core

I control T fill_level l request

Avalon-MM Avalon-MM Avalon-MM
Shve Status Status

Avalon-S Multi-Channel Shared FIFO

Data Sourd

Avalon-ST Avalon-ST
Status Source Status Source

almost_empty l l almost_full

Interfaces

This section describes the core's interfaces.

Avalon-ST Interfaces

The core includes Avalon-ST interfaces for transferring data and almost-full status.

Table 16-4: Properties of Avalon-ST Interfaces

Backpressure Ready latency = 0. Not supported.
Data Width Configurable. Data width = 2 bits.

Symbols per beat = 1.

Channel Supported, up to 16 channels. | Supported, up to 16 channels.
Error Configurable. Not used.
Packet Supported. Not supported.
Avalon-ST Multi-Channel Shared Memory FIFO Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

16-4 Operation 2016.06.17

Avalon-MM Interfaces
The core can have up to three Avalon-MM interfaces:

o Avalon-MM control interface—Allows master peripherals to set and access almost-full and almost-
empty thresholds. The same set of thresholds is used by all channels. See Control Interface Register
Map figure for the description of the threshold registers.

o Avalon-MM fill-level interface—Allows master peripherals to retrieve the fill level of the FIFO buffer
for a given channel. The fill level represents the amount of data in the FIFO buffer at any given time.
The read latency on this interface is one. See the Fill-level Interface Register Map table for the
description of the fill-level registers.

« Avalon-MM request interface—Allows master peripherals to request data for a given channel. This
interface is implemented only when the Use Request parameter is turned on. The request_address
signal contains the channel number. Only one word of data is returned for each request.

For more information about Avalon interfaces, refer to the Avalon Interface Specifications.

Operation

The Avalon-ST Multi-Channel Shared FIFO core allocates dedicated memory segments within the core
for each channel, and is implemented such that the memory segments occupy a single memory block. The
parameter FIFO depth determines the depth of each memory segment.

The core receives data on its in interface (Avalon-ST sink) and stores the data in the allocated memory
segments. If a packet contains any error (in_error signal is asserted), the core drops the packet.

When the core receives a request on its request interface (Avalon-MM slave), it forwards the requested
data to its out interface (Avalon-ST source) only when it has received a full packet on its in interface. If
the core has not received a full packet or has no data for the requested channel, it deasserts the val id
signal on its out interface to indicate that data is not available for the channel. The output latency is three
and only one word of data can be requested at a time.

When the Avalon-MM request interface is not in use, the request_write signal is kept asserted and the
request_address signal is set to 0. Hence, if you configure the core to support more than one channel,
you must also ensure that the Use request parameter is turned on. Otherwise, only channel 0 is accessible.

You can configure almost-full thresholds to manage FIFO overflow. The current threshold status for each
channel is available from the core's Avalon-ST status interfaces in a round-robin fashion. For example, if
the threshold status for channel 0 is available on the interface in clock cycle n, the threshold status for
channel 1 is available in clock cycle n+1 and so forth.

Parameters

Table 16-5: Configurable Parameters

Number of channels 1,2,4,8,and |The total number of channels supported on the Avalon-

16 ST data interfaces.
Symbols per beat 1-32 The number of symbols transferred in a beat on the
Avalon-ST data interfaces
Bits per symbol 1-32 The symbol width in bits on the Avalon-ST data
interfaces.
Altera Corporation Avalon-ST Multi-Channel Shared Memory FIFO Core

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Parameters 16-5

Error width 0-32 The width of the error signal on the Avalon-ST data
interfaces.

FIFO depth 2-2%2 The depth of each memory segment allocated for a
channel. The value must be a multiple of 2.

Use packets Oorl Setting this parameter to 1 enables packet support on the
Avalon-ST data interfaces.

Use fill level Oorl Setting this parameter to 1 enables the Avalon-MM
status interface.

Number of almost-full |0 to 2 The number of almost-full thresholds to enable. Setting

thresholds this parameter to 1 enables Use almost-full threshold 1.

Setting it to 2 enables both Use almost-full threshold 1
and Use almost-full threshold 2.

Number of almost- 0to2 The number of almost-empty thresholds to enable.
empty thresholds Setting this parameter to 1 enables Use almost-empty
threshold 1. Setting it to 2 enables both Use almost-
empty threshold 1 and Use almost-empty threshold 2.

Section available 0 to 2 Address | Specify the amount of data to be delivered to the output

threshold Width interface. This parameter applies only when packet
support is disabled.

Packet buffer mode Oorl Setting this parameter to 1 causes the core to deliver only

full packets to the output interface. This parameter
applies only when Use packets is set to 1.

Drop on error Oorl Setting this parameter to 1 causes the core to drop
packets at the Avalon-ST data sink interface if the error
signal on that interface is asserted. Otherwise, the core
accepts the packet and sends it out on the Avalon-ST
data source interface with the same error. This parameter
applies only when packet buffer mode is enabled.

Address width 1-32 The width of the FIFO address. This parameter is

determined by the parameter FIFO depth; FIFO depth =
2 Address Width.

Use request — Turn on this parameter to implement the Avalon-MM
request interface. If the core is configured to support
more than one channel and the request interface is
disabled, only channel 0 is accessible.

Avalon-ST Multi-Channel Shared Memory FIFO Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
16-6 Software Programming Model 2016.06.17

Use almost-full —

threshold 1

Use almost-full _ Turn on these parameters to implement the optional

threshold 2 Avalon-ST almost-full and almost-empty interfaces and
their corresponding registers. See Control Interface

Use almost-empty - Register Map for the description of the threshold

threshold 1 registers.

Use almost-empty —

threshold 2

Use almost-full Oorl This threshold indicates that the FIFO is almost full. It is

threshold 1 enabled when the parameter Number of almost-full
threshold is set to 1 or 2.

Use almost-full Oorl This threshold is an initial indication that the FIFO is

threshold 2 getting full. It is enabled when the parameter Number of
almost-full threshold is set to 2.

Use almost-empty Oorl This threshold indicates that the FIFO is almost empty. It

threshold 1 is enabled when the parameter Number of almost-
empty threshold is set to 1 or 2.

Use almost-empty Oorl This threshold is an initial indication that the FIFO is

threshold 2 getting empty. It is enabled when the parameter Number

of almost-empty threshold is set to 2.

Software Programming Model

The following sections describe the software programming model for the Avalon-ST Multi-Channel
Shared FIFO core.

HAL System Library Support

The Altera-provided driver implements a HAL device driver that integrates into the HAL system library
for Nios II systems. HAL users should access the Avalon-ST Multi-Channel Shared FIFO core via the
familiar HAL API and the ANSI C standard library.

Register Map

You can configure the thresholds and retrieve the fill-level for each channel via the Avalon-MM control
and fill-level interfaces respectively. Subsequent sections describe the registers accessible via each
interface.

Altera Corporation Avalon-ST Multi-Channel Shared Memory FIFO Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Register Map 16-7

Control Register Interface

Table 16-6: Control Interface Register Map

Byte Access | Reset Description
Offset Value

ALMOST_FULL_THRESHOLD Primary almost-full threshold. The bit Almost_
full_data[0] on the Avalon-ST almost-full status
interface is set to 1 when the FIFO level is equal to
or greater than this threshold.

4 ALMOST_EMPTY_ RW |0 Primary almost-empty threshold. The bit Almost_
THRESHOLD empty_data[0] on the Avalon-ST almost-empty
status interface is set to 1 when the FIFO level is
equal to or less than this threshold.

8 ALMOST_FULL2_THRESHOLD RW |0 Secondary almost-full threshold. The bit Almost_
full_data[1] on the Avalon-ST almost-full status
interface is set to 1 when the FIFO level is equal to
or greater than this threshold.

12 |ALMOST_EMPTY2_ RW |0 Secondary almost-empty threshold. The bit
THRESHOLD Almost_empty_data[1] on the Avalon-ST almost-
empty status interface is set to 1 when the FIFO
level is equal to or less than this threshold.

Base |Almost_Empty_Threshold RW The value of the primary almost-empty threshold.
+8 The bit Almost_empty_data[0] on the Avalon-ST
almost-empty status interface is set to 1 when the
FIFO level is greater than or equal to this

threshold.
Base |Almost_Empty2 Threshold |RW The value of the secondary almost-empty
+ 12 threshold. The bit AImost_empty_data[l] Avalon-

ST almost-empty status interface is set to 1 when
the FIFO level is greater than or equal to this
threshold.

Fill-Level Register Interface

The table below shows the register map for the fill-level interface.

Table 16-7: Fill-level Interface Register Map

B2 I - S
Offset Value
fill_level 0 0
4 fill_level 1 RO 0 Fill level for each channel. Each register is
0
0

defined for each channel. For example, if the core

8 fill_level 2 RO is configured to support four channel, four fill-
(n*4 |fill _level n RO level registers are defined.
)
Avalon-ST Multi-Channel Shared Memory FIFO Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

16-8 Document Revision History

UG-01085
2016.06.17

Document Revision History

Table 16-8: Document Revision History

I

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 Added the description of almost-empty thresholds and fill-level
registers. Revised the Operation section.

November 2009 |91 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

Altera Corporation

Avalon-ST Multi-Channel Shared Memory FIFO Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Multi-Channel%20Shared%20Memory%20FIFO%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SPI Slave/JTAG to Avalon Master Bridge Cores

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The SPI Slave to Avalon® Master Bridge and the JTAG to Avalon Master Bridge cores provide a
connection between host systems and Qsys systems via the respective physical interfaces. Host systems
can initiate Avalon Memory-Mapped (Avalon-MM) transactions by sending encoded streams of bytes via
the cores’ physical interfaces. The cores support reads and writes, but not burst transactions.

Functional Description

Figure 17-1: System with a SPI Slave to Avalon Master Bridge Core

Altera FPGA
SPI tolransaction Bidge
Avalon-ST 2
o »| 2 Bytesto o »| 2 3
o PR rcets @ "= 5 P
spI Converter Avalon-ST = g Reg ofthe
Master Avalon-ST| Packets to B o 8 Sygem
(Example: [€—{P SPI Core Transactions [t 3
Power PC Converter S £
Processor) Avalon-ST 2 £
= @ Packetsto ¥ | @ 2
? & Bytes @ |V ° 2
Converter

SPI System
Clock { Clock

Avalon-ST = Avalon-ST
Source Sink

src
sinl

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 .tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20SPI%20Slave/JTAG%20to%20Avalon%20Master%20Bridge%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. o UG-01085
17-2 Functional Description 2016.06.17

Figure 17-2: System with a JTAG to Avalon Master Bridge Core

Altera FPGA
JIAG toTransaction Bidge
Avalon-ST Avalon-ST Q
ol pl@ singleClok o 2 Bytesto o 2 -]
o 2 R0 6 P|R pdes o PR £
64 b Convert 8
Avalon-ST (64 bytes) verter Avalon-ST g Red ofthe
JAG Packets to S Sygem
Host (€19 g Interface Transactions g
PC Core Converter E
Avalon-ST g
= o Packetsto ¥ | g o I
o &) Bytes @ | ° @
Converter
JAG System
Clock § Clock

Avalon-ST

o Avalon-ST
@ Sink

@ Source

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge cores accept encoded
streams of bytes with transaction data on their respective physical interfaces and initiate Avalon-MM
transactions on their Avalon-MM interfaces. Each bridge consists of the following cores, which are
available as stand-alone components in Qsys:

« Avalon-ST Serial Peripheral Interface and Avalon-ST JTAG Interface—Accepts incoming data in
bits and packs them into bytes.

« Avalon-ST Bytes to Packets Converter—Transforms packets into encoded stream of bytes, and a
likewise encoded stream of bytes into packets.

« Avalon-ST Packets to Transactions Converter— Transforms packets with data encoded according to
a specific protocol into Avalon-MM transactions, and encodes the responses into packets using the
same protocol.

+ Avalon-ST Single Clock FIFO—Buffers data from the Avalon-ST JTAG Interface core. The FIFO is
only used in the JTAG to Avalon Master Bridge.

For the bridges to successfully transform the incoming streams of bytes to Avalon-MM transactions,
the streams of bytes must be constructed according to the protocols used by the cores.

The following example shows how a bytestream changes as it is transferred through the different layers
in the bridges.

Figure 17-3: Bits to Avalon-MM Transaction

LsB MSB
[4a]7a]7c[4A]00]00] 00 [4A]00 [04 02 [4B[7D]5A]40]4D[6A]FF[03]7B]5F | «— 5‘yleshca_rrield_ over
e sical interface

J = - aﬂefldyles and esc apes
Physical Layer Idle Idle Idle Esca pe have been inse rted.
Input: Bits Esca pe is dropped.
Output: Bytes Next byte is XORe d

Dropped with 0x20.

The p acket enc oded
ashytes.

[7a]7c]oo]00]0o [00]04]02 [4B]7D]5A[40 [4A]FF[03[7B]5F| 4—
[E—— [[

Packet Layer SOP ChO Escap e EOP

Input: Bytes Escape is dropped

Output: Avalon-ST Next byte is XORed
Packets with 0x20.

‘00‘00‘00‘04‘02‘AB‘7A‘40‘AA‘FF‘OS‘SF‘ «— Z:EJQ?E?:@DQH
pack et.

Transaction Layer | I I |
Input: Avalon-ST

Pack eis Command Addres s Data
Output: Avalnn-MM " The Avalon-MM
s bt e AT e Tl
Altera Corporation SPI Slave/JTAG to Avalon Master Bridge Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Slave/JTAG%20to%20Avalon%20Master%20Bridge%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Parameters 17-3

When the transaction is complete, the bridges send a response to the host system using the same protocol.

Parameters

For the SPI Slave to Avalon Master Bridge core, the parameter Number of synchronizer stages: Depth
allows you to specify the length of synchronization register chains. These register chains are used when a
metastable event is likely to occur and the length specified determines the meantime before failure. The
register chain length, however, affects the latency of the core.

For more information on metastability in Altera devices, refer to AN 42: Metastability in Altera Devices.

For more information on metastability analysis and synchronization register chains, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus Prime Handbook.

Document Revision History

Table 17-1: Document Revision History

I I

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |91 No change from previous release.

March 2009 v9.0.0 Added description of a new parameter Number of synchronizer
stages: Depth.

November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

SPI Slave/JTAG to Avalon Master Bridge Cores

D Send Feedback

Altera Corporation

ftp://ftp.altera.com/pub/lit_req/document/an/an042.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SPI%20Slave/JTAG%20to%20Avalon%20Master%20Bridge%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Streaming Channel Multiplexer and
Demultiplexer Cores

2016.06.17

UG-01085 @ Subscribe D Send Feedback

Avalon Streaming Channel Multiplexer and Demultiplexer Cores

Core Overview

18

The Avalon® streaming (Avalon-ST) channel multiplexer core receives data from a number of input
interfaces and multiplexes the data into a single output interface, using the optional channel signal to
indicate which input the output data is from. The Avalon-ST channel demultiplexer core receives data
from a channelized input interface and drives that data to multiple output interfaces, where the output

interface is selected by the input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces on cores that support the

unidirectional flow of data. The multiplexer and demultiplexer allow you to create multiplexed or de-

multiplexer datapaths without having to write custom HDL code to perform these functions. The

multiplexer includes a round-robin scheduler. Both cores are SOPC Builder-ready and integrate easily

into any SOPC Builder-generated system. This chapter contains the following sections:

Resource Usage and Performance

Resource utilization for the cores depends upon the number of input and output interfaces, the width of
the datapath and whether the streaming data uses the optional packet protocol. For the multiplexer, the

parameterization of the scheduler also effects resource utilization.

Table 18-1: Multiplexer Estimated Resource Usage and Performance

Stratix" Il and Cyclone®]
Stratix Il GX
Data Schec'iulm (Approximate LEs)
s g Size
Width Cvel
(yc es) fMAX ALM fMAX LOgiC
(MHz) Count (MHz)
500 31

2 Y 1 420 63 422 80
2 Y 2 500 36 417 60 422 58
2 Y 32 451 43 364 68 360 49

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

18-2 Multiplexer 2016.06.17
Stratix" Il and Cyclone® Il
Stratix Il GX
No. of Schec.lulln (Approximate LEs)
g Size
Inputs I
(cyc ES) fMAX ALM fMAX LOgiC
(MHz) | Count | (MH2) Celis
8 Y 2 401 150 257 233 228 298
8 Y 32 356 151 219 207 211 123
16 Y 2 262 333 174 533 170 284
16 Y 32 310 337 161 471 157 277
2 N 1 500 23 400 48 422 52
2 N 9 500 30 420 52 422 56
11 N 9 292 275 197 397 182 287
16 N 9 262 295 182 441 179 224

The core operating frequency varies with the device, the number of interfaces and the size of the datapath.

Table 18-2: Demultiplexer Estimated Resource Usage

Stratix Il Cyclone Stratix Il GX

DETERTe) (Approximate LEs) (Approximate LEs)
No. of Inputs (Symbols

per Beat) fmax ALM Count famax Logic Cells fuax Logic Cells
(MHz) (MHz) (MHz)
500 53 400 61 399 44

2 1

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443
Multiplexer

This section describes the hardware structure and functionality of the multiplexer component.

Functional Description

The Avalon-ST multiplexer takes data from a number of input data interfaces, and multiplexes the data
onto a single output interface. The multiplexer includes a simple, round-robin scheduler that selects from
the next input interface that has data. Each input interface has the same width as the output interface, so
that all other input interfaces are backpressured when the multiplexer is carrying data from a different
input interface.

Altera Corporation Avalon Streaming Channel Multiplexer and Demultiplexer Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Parameters 18-3

The multiplexer includes an optional channel signal that enables each input interface to carry channel-
ized data. When the channel signal is present on input interfaces, the multiplexer adds log,
(num_input_interfaces) bits to make the output channel signal, such that the output channel signal has all
of the bits of the input channel plus the bits required to indicate which input interface each cycle of data is
from. These bits are appended to either the most or least significant bits of the output channel signal as
specified in the SOPC Builder MegaWizard interface.

Figure 18-1: Multiplexer

data_in0
data_out
data_in_n
Round Robin, Burst

Aware Sche duler
(optional)

channe |

The internal scheduler considers one input interface at a time, selecting it for transfer. Once an input
interface has been selected, data from that input interface is sent until one of the following scenarios
occurs:

+ The specified number of cycles have elapsed.
 The input interface has no more data to send and val id is deasserted on a ready cycle.
o When packets are supported, endofpacket is asserted.

Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets. The input interfaces
are identical; they have the same symbol and data widths, error widths, and channel widths.

Output Interface

The output interface carries the multiplexed data stream with data from all of the inputs. The symbol,
data, and error widths are the same as the input interfaces. The width of the channel signal is the same as
the input interfaces, with the addition of the bits needed to indicate the input each datum was from.

Parameters
The following sections list the available options in the MegaWizard™ interface.

Avalon Streaming Channel Multiplexer and Demultiplexer Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

18-4 Demultiplexer 2016.06.17

Functional Parameters
You can configure the following options for the multiplexer:

o Number of Input Ports—The number of input interfaces that the multiplexer supports. Valid values
are 2-16.

o Scheduling Size (Cycles)—The number of cycles that are sent from a single channel before changing
to the next channel.

» Use Packet Scheduling—When this option is on, the multiplexer only switches the selected input
interface on packet boundaries. Hence, packets on the output interface are not interleaved.

« Use high bits to indicate source port—When this option is on, the high bits of the output channel
signal are used to indicate the input interface that the data came from. For example, if the input
interfaces have 4-bit channel signals, and the multiplexer has 4 input interfaces, the output interface
has a 6-bit channel signal. If this parameter is true, bits [5:4] of the output channel signal indicate the
input interface the data is from, and bits [3:0] are the channel bits that were presented at the input
interface.

Output Interface
You can configure the following options for the output interface:

« Data Bits Per Symbol—The number of bits per symbol for the input and output interfaces. Valid
values are 1-32 bits.

« Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer).
Valid values are 1-32.

o Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

+ Channel Signal Width (bits)—The number of bits used for the channel signal for input interfaces. A
value of 0 indicates that input interfaces do not have channels. A value of 4 indicates that up to 16
channels share the same input interface. The input channel can have a width between 0-31 bits. A
value of 0 means that the optional channel signal is not used.

o Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is not used.

Demultiplexer

This section describes the hardware structure and functionality of the demultiplexer component.

Functional Description

That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data
to multiple output interfaces, where the output interface selected for a particular transfer is specified by
the input channel signal. The data is delivered to the output interfaces in the same order it was received at
the input interface, regardless of the value of channel, packet, frame, or any other signal. Each of the
output interfaces has the same width as the input interface, so each output interface is idle when the
demultiplexer is driving data to a different output interface. The demultiplexer uses log,
(num_output_interfaces) bits of the channel signal to select the output to which to forward the data; the
remainder of the channel bits are forwarded to the appropriate output interface unchanged.

Altera Corporation Avalon Streaming Channel Multiplexer and Demultiplexer Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 185
2016.06.17 Parameters s

Figure 18-2: Demultiplexer

data_out0
data_in

data_out_n

Input Interface

Each input interface is an Avalon-ST data interface that optionally supports packets.

Output Interfaces

Each output interface carries data from a subset of channels from the input interface. Each output
interface is identical; all have the same symbol and data widths, error widths, and channel widths. The
symbol, data, and error widths are the same as the input interface. The width of the channel signal is the
same as the input interface, without the bits that were used to select the output interface.

Parameters

The following sections list the available options in the MegaWizard Interface.

Functional Parameters
You can configure the following options for the demultiplexer as a whole:

« Number of Output Ports—The number of output interfaces that the multiplexer supports Valid
values are 2-16.

« High channel bits select output—When this option is on, the high bits of the input channel signal are
used by the de-multiplexing function and the low order bits are passed to the output. When this option
is off, the low order bits are used and the high order bits are passed through.

The following example illustrates the significance of the location of these signals. In the Select Bits for
Demltiplexer figure below there is one input interface and two output interfaces. If the low-order bits
of the channel signal select the output interfaces, the even channels goes to channel 0 and the odd
channels goes to channel 1. If the high-order bits of the channel signal select the output interface,
channels 0-7 goes to channel 0 and channels 8-15 goes to channel 1.

Avalon Streaming Channel Multiplexer and Demultiplexer Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
18-6 Hardware Simulation Considerations 2016.06.17

Figure 18-3: Select Bits for Demultiplexer

data_out0

m channe |<3..OE
data_in
channel<4. '0>i
data_out_n
channel<3..0

Input Interface
You can configure the following options for the input interface:

« Data Bits Per Symbol—The number of bits per symbol for the input and output interfaces. Valid
values are 1 to 32 bits.

« Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer).
Valid values are 1 to 32.

o Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

« Channel Signal Width (bits)—The number of bits used for the channel signal for output interfaces. A
value of 0 means that output interfaces do not use the optional channel signal.

« Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is not unused.

Hardware Simulation Considerations

The multiplexer and demultiplexer components do not provide a simulation testbench for simulating a
stand-alone instance of the component. However, you can use the standard SOPC Builder simulation flow
to simulate the component design files inside an SOPC Builder system.

Software Programming Model

The multiplexer and demultiplexer components do not have any user-visible control or status registers.
Therefore, software cannot control or configure any aspect of the multiplexer or de-multiplexer at run-
time. The components cannot generate interrupts.

Altera Corporation Avalon Streaming Channel Multiplexer and Demultiplexer Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 18-7

Document Revision History

Table 18-3: Document Revision History

I

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |91 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 |81 Changed to 8-1/2 x 11 page size. Added parameter Include Packet
Support.

May 2008 v8.0.0 No change from previous release.

Avalon Streaming Channel Multiplexer and Demultiplexer Cores

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Channel%20Multiplexer%20and%20Demultiplexer%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Bytes to Packets and Packets to
Bytes Converter Cores 1 9

2016.06.17

UG-01085 X subscribe C] Send Feedback

The Avalon® Streaming (Avalon-ST) Bytes to Packets and Packets to Bytes Converter cores allow an
arbitrary stream of packets to be carried over a byte interface, by encoding packet-related control signals
such as startofpacket and endofpacket into byte sequences.The Avalon-ST Packets to Bytes Converter

core encodes packet control and payload as a stream of bytes. The Avalon-ST Bytes to Packets Converter
core accepts an encoded stream of bytes, and converts it into a stream of packets.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of how the cores
are used.

For more information about the bridge, refer to Avalon-ST Bytes to Packets and Packets to Bytes
Converter Cores

Functional Description

The following two figures show block diagrams of the Avalon-ST Bytes to Packets and Packets to Bytes
Converter cores.

Figure 19-1: Avalon-ST Bytes to Packets Converter Core

data_in "é ™) Avalon-ST data_out
_bytes) SB=l Bytes tdackets (packe)
z Caonverter
Figure 19-2: Avalon-ST Packets to Bytes Converter Core
data_out 5 data_in
o) BEER e to aytes (e
2 Cawerter

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Bytes%20to%20Packets%20and%20Packets%20to%20Bytes%20Converter%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

19-2 Interfaces

Interfaces

UG-01085
2016.06.17

Table 19-1: Properties of Avalon-ST Interfaces

T

Backpressure | Ready latency = 0.

Data Width | Data width = 8 bits; Bits per symbol = 8.

Channel Supported, up to 255 channels.

Error Not used.

Packet Supported only on the Avalon-ST Bytes to Packet Converter core’s source interface and

the Avalon-ST Packet to Bytes Converter core’s sink interface.

For more information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

Operation—Avalon-ST Bytes to Packets Converter Core
The Avalon-ST Bytes to Packets Converter core receives streams of bytes and transforms them into
packets. When parsing incoming bytestreams, the core decodes special characters in the following
manner, with higher priority operations listed first:

+ Escape (0x7d)—The core drops the byte. The next byte is XOR'ed with 0x20.

o Start of packet (0x7a)—The core drops the byte and marks the next payload byte as the start of a
packet by asserting the startofpacket signal on the Avalon-ST source interface.

« End of packet (0x7b)—The core drops the byte and marks the following byte as the end of a packet by
asserting the endofpacket signal on the Avalon-ST source interface. For single beat packets, both the
startofpacket and endofpacket signals are asserted in the same clock cycle.

There are two possible cases if the payload is a special character:

« The byte sent after end of packet is ESC'ed and XOR'ed with 0x20.

+ The byte sent after end of packet is assumed to be the last byte regardless of whether or not it is a
special character.

Note: The escape character should be used after an end of packet if the next character requires it.

« Channel number indicator (0x7c)—The core drops the byte and takes the next non-special character
as the channel number.

Altera Corporation

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Bytes%20to%20Packets%20and%20Packets%20to%20Bytes%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . 193
2016.06.17 Operation—Avalon-ST Packets to Bytes Converter Core 5

Figure 19-3: Examples of Bytestreams

Singl e-channel packet for Channel 1:

Ox7c | 0x01 | Ox7a | Ox7d

| J | I J
Channel 1 SOP Data =0x7a Data bytes EOP Last
Data
byte

0x5a | 0x01 Oxff | Ox7b | Ox3a

Singl e-beat pack et:

0x7c | 0x02 | Ox7a | Ox7b

[L
Channel2 SOP EOP Data
byte

0x3a

Interleaved channel s in a pack et:

0x7c | 0x00 | Ox7a | Ox10

| J | Il I I Il J
Channel0 SOP Data Channel 1 Data Channel 0 Data EOP Data
(Cho) (cho) (ch1) (Ch0) (Cho) (Ch0)

0x11 | Ox7c | 0x01 | 0x30 | Ox31 | Ox7c | Ox00 | Ox12 | 0x13 | Ox7b | Ox14

Operation—Avalon-ST Packets to Bytes Converter Core

The Avalon-ST Packets to Bytes Converter core receives packetized data and transforms the packets to
bytestreams. The core constructs outgoing bytestreams by inserting appropriate special characters in the
following manner and sequence:

« If the startofpacket signal on the core's source interface is asserted, the core inserts the following
special characters:

o Channel number indicator (0x7c).
o Channel number, escaping it if required.
« Start of packet (0x7a).

« If the endofpacket signal on the core's source interface is asserted, the core inserts an end of packet
(0x7b) before the last byte of data.

« If the channel signal on the core’s source interface changes to a new value within a packet, the core
inserts a channel number indicator (0x7c) followed by the new channel number.

« Ifadata byte is a special character, the core inserts an escape (0x7d) followed by the data XORed with
0x20.

Document Revision History

Table 19-2: Document Revision History

I T R

November 2015 2015.11.06 Updated "Operation-Avalon-ST Bytes to
Packets Converter Core" section.

July 2014 2014.07.24 Removed mention of SOPC Builder,
updated to Qsys.
December 2010 v10.1.0 Removed the “Device Support”, “Instanti-

ating the Core in SOPC Builder”, and
“Referenced Documents” sections.

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Bytes%20to%20Packets%20and%20Packets%20to%20Bytes%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

19-4 Document Revision History

UG-01085
2016.06.17

o T e T e

July 2010

No change from previous release.

v10.0.0
November 2009 v9.1.0 No change from previous release.
March 2009 v9.0.0 No change from previous release.
November 2008 v8.1.0 Changed to 8-1/2 x 11 page size. No change
to content.
May 2008 v8.0.0 Initial release.

Altera Corporation

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Bytes%20to%20Packets%20and%20Packets%20to%20Bytes%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Packets to Transactions Converter Core 2 O

2016.06.17

UG-01085 B subscribe () Send Feedback

Core Overview

The Avalon® Packets to Transactions Converter core receives streaming data from upstream components
and initiates Avalon Memory-Mapped (Avalon-MM) transactions. The core then returns Avalon-MM
transaction responses to the requesting components.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of how this core
is used.

For more information on the bridge, refer to Avalon Packets to Transactions Converter Core

Functional Description

Figure 20-1: Avalon Packets to Transactions Converter Core

—
U') 4

data_in E) (% N
Q
g g
Avalon =

Packets to s Avalon-MM

Transactions =l < > Skve
Cawerter E Component

data_out

Avalon-ST

Interfaces

Table 20-1: Properties of Avalon-ST Interfaces

e T ey

Backpressure ‘ Ready latency = 0.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance IS0

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1 12008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon%20Packets%20to%20Transactions%20Converter%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
20-2 Operation

2016.06.17
e ey
Data Width Data width = 8 bits; Bits per symbol = 8.
Channel Not supported.
Error Not used.
Packet Supported.

The Avalon-MM master interface supports read and write transactions. The data width is set to 32 bits
and burst transactions are not supported.

For more information about Avalon-ST interfaces, refer to Avalon Interface Specifications.

Operation

The Avalon Packets to Transactions Converter core receives streams of packets on its Avalon-ST sink
interface and initiates Avalon-MM transactions. Upon receiving transaction responses from Avalon-MM
slaves, the core transforms the responses to packets and returns them to the requesting components via its
Avalon-ST source interface. The core does not report Avalon-ST errors.

Packet Formats

The core expects incoming data streams to be in the format shown in the table below. A response packet is
returned for every write transaction. The core also returns a response packet if a no transaction (0x7f) is
received. An invalid transaction code is regarded as a no transaction. For read transactions, the core
simply returns the data read.

Table 20-2: Packet Formats

T T T

Transaction Packet Format

0 Transaction code | Type of transaction. See Properties of Avalon-ST Interfaces table.
1 Reserved Reserved for future use.
[3:2] Size Transaction size in bytes. For write transactions, the size indicates

the size of the data field. For read transactions, the size indicates the
total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code | The transaction code with the most significant bit inversed.
1 Reserved Reserved for future use.
[4:2] Size Total number of bytes read/written successfully.

Supported Transactions

The table below lists the Avalon-MM transactions supported by the core.

Altera Corporation Avalon Packets to Transactions Converter Core

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Packets%20to%20Transactions%20Converter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . . 20-3
2016.06.17 Document Revision History 2

Table 20-3: Transaction Supported

Code

0x00 Write, non-incrementing Writes data to the given address until the total number of
address. bytes written to the same word address equals to the
value specified in the size field.

0x04 Write, incrementing address. | Writes transaction data starting at the given address.

0x10 Read, non-incrementing Reads 32 bits of data from the given address until the
address. total number of bytes read from the same address equals
to the value specified in the size field.

0x14 Read, incrementing address. | Reads the number of bytes specified in the size field
starting from the given address.

Ox7f No transaction. No transaction is initiated. You can use this transaction
type for testing purposes. Although no transaction is
initiated on the Avalon-MM interface, the core still
returns a response packet for this transaction code.

The core can handle only a single transaction at a time. The ready signal on the core's Avalon-ST sink
interface is asserted only when the current transaction is completely processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST interface is
forwarded directly to the Avalon-MM interface and vice-versa. Asserting the waitrequest signal on the
Avalon-MM interface backpressures the Avalon-ST sink interface. In the opposite direction, if the
Avalon-ST source interface is backpressured, the read signal on the Avalon-MM interface is not asserted
until the backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a read could
result in data loss. In such cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write transactions, the actual
data size is expected to be the same as the value of the size field. Whether or not both values agree, the
core always uses the EOP to determine the end of data.

Malformed Packets
The following are examples of malformed packets:

« Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction. If an SOP is
received in the middle of a transaction, the core drops the current transaction without returning a
response packet for the transaction, and initiates a new transaction. This effectively handles packets
without an end of packet(EOP).

« Unsupported transaction codes—The core treats unsupported transactions as a no transaction.

Document Revision History

Table 20-4: Document Revision History

I I

July 2014 ‘ 2014.07.24 ‘ Removed mention of SOPC Builder, updated to Qsys

Avalon Packets to Transactions Converter Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Packets%20to%20Transactions%20Converter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

20-4 Document Revision History

UG-01085
2016.06.17

I I S

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |91 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Initial release.

Altera Corporation

Avalon Packets to Transactions Converter Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Packets%20to%20Transactions%20Converter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2016.06.17

UG-01085 @ Subscribe D Send Feedback

Avalon-ST Round Robin Scheduler Core

Core Overview

Avalon-ST Round Robin Scheduler Core 2 1

Avalon® Streaming (Avalon-ST) components in SOPC Builder provide a channel interface to stream data
from multiple channels into a single component. In a multi-channel Avalon-ST component that stores
data, the component can store data either in the sequence that it comes in (FIFO) or in segments
according to the channel. When data is stored in segments according to channels, a scheduler is needed to
schedule the read operations from that particular component. The most basic of the schedulers is the

Avalon-ST Round Robin Scheduler core.

The Avalon-ST Round Robin Scheduler core is SOPC Builder-ready and can integrate easily into any

SOPC Builder-generated systems.

Performance and Resource Utilization

This section lists the resource utilization and performance data for various Altera® device families. The
estimates are obtained by compiling the core using the Quartus Prime software.

The table below shows the resource utilization and performance data for a Stratix IT GX device

(EP2SGX130GF150814).

Table 21-1: Resource Utilization and Performance Data for Stratix Il GX Devices

Number of Logic Registers Memory M512/
Channels M4K/
M-RAM
4 7 7 0/0/0 > 125
12 25 17 0/0/0 > 125
24 62 30 0/0/0 > 125

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,

IO
9001:2008
Registered

product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134

now part of Intel “

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Round%20Robin%20Scheduler%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

. s e UG-01085
21-2 Functional Description 2016.06.17

The table below shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore® function in Stratix IV devices is similar to
Stratix III devices.

Table 21-2: Resource Utilization and Performance Data for Stratix lll Devices

Number of Logic Registers Memory M9K/

Channels M144K/ MLAB
4 7 7 0/0/0 > 125
12 25 17 0/0/0 > 125
24 67 30 0/0/0 > 125

The table below shows the resource utilization and performance data for a Cyclone III device
(EP3C120F78017).

Table 21-3: Resource Utilization and Performance Data for Cyclone lll Devices

Number of Total Logic Total Registers Memory M9K fmax
Channels Elements (MH2)
> 125
12 32 17 0 > 125
24 71 30 0 > 125

Functional Description

The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-
ST component that buffers data by channels. It reads the almost-full threshold values from the multiple
channels in the multi-channel component and issues the read request to the Avalon-ST source according
to a round-robin scheduling algorithm.

Figure 21-1: Avalon-ST Round Robin Scheduler Block Diagram

Request

(Channel_select) GEOnST)

Round-Robin
Scheduler

Almost Full Status

Avalon-MM
Write Master

JUIS LS-uofeny

Altera Corporation Avalon-ST Round Robin Scheduler Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Round%20Robin%20Scheduler%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Interfaces 21-3

Interfaces
The following interfaces are available in the Avalon-ST Round Robin Scheduler core:
« Almost-Full Status Interface

+ Request Interface

Almost-Full Status Interface

The Almost-Full Status interface is an Avalon-ST sink interface.

Table 21-4: Avalon-ST Interface Feature Support

e T ey

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1
Channel Maximum channel = 32; Channel width = 5
Error Not supported

Packet Not supported

The interface collects the almost-full status from the sink components for all the channels in the sequence
provided.

Request Interface

The Request Interface is an Avalon Memory-Mapped (MM) Write Master interface. This interface
requests data from a specific channel. The Avalon-ST Round Robin Scheduler core cycles through all of
the channels it supports and schedules data to be read.

Operations

If a particular channel is almost full, the Avalon-ST Round Robin Scheduler will not schedule data to be
read from that channel in the source component.

The Avalon-ST Round Robin Scheduler only requests 1 beat of data from a channel at each transaction.
To request 1 beat of data from channel n, the scheduler writes the value 1 to address (4 xn). For example,
if the scheduler is requesting data from channel 3, the scheduler writes 1 to address 0xC.

At every clock cycle, the Avalon-ST Round Robin Scheduler requests data from the next channel.
Therefore, if the Avalon-ST Round Robin Scheduler starts requesting from channel 1, at the next clock
cycle, it requests from channel 2. The Avalon-ST Round Robin Scheduler does not request data from a
particular channel if the almost-full status for the channel is asserted. In this case, one clock cycle is used
without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component is able to service
the request transaction. The component asserts waitrequest when it cannot accept new requests.

Table 21-5: Ports for the Avalon-ST Round Robin Scheduler

T T

Clock and Reset

clk In Clock reference.

Avalon-ST Round Robin Scheduler Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Round%20Robin%20Scheduler%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

21-4

Parameters

UG-01085
2016.06.17

I T

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log, Out The write address used to signal the channel the request is

Max_Channels—1:0) for.

request_write Out Write enable signal.

request_writedata Out T}ile amlount of data requested from the particular
channel.

This value is always fixed at 1.

request_waitrequest

In Wait request signal, used to pause the scheduler when the
slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and almost_full_
data are valid.

almost_full_channel In Indicates the channel for the current status indication.

(Channel_Width-1:0)

almost_full_data (log, In A 1-bit signal that is asserted high to indicate that the

Max_Channels—1:0) channel indicated by almost_full_channel is almost
full.

Parameters

Table 21-6: Parameters for Avalon-ST Round Robin Scheduler Component

Parameters Values Description

Number of 2-32
channels

Specifies the number of channels the Avalon-ST Round Robin Scheduler
supports.

Use almost-full 0-1
status

Specifies whether the almost-full interface is used. If the interface is not
used, the core always requests data from the next channel at the next

clock cycle.

Document Revision History

Table 21-7: Document Revision History

I I S

December 2010 v10.1.0

» «

Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0

No change from previous release.

Altera Corporation

Avalon-ST Round Robin Scheduler Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Round%20Robin%20Scheduler%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 21-5

I I S

November 2009

No change from previous release.

v9.1.0
March 2009 v9.0.0 No change from previous release.
November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 Initial release.

Avalon-ST Round Robin Scheduler Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Round%20Robin%20Scheduler%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Delay Core 2 2

2016.06.17

UG-01085 X subscribe C] Send Feedback

Avalon-ST Delay Core

Core Overview

The Avalon® Streaming (Avalon-ST) Delay core provides a solution to delay Avalon-ST transactions by a
constant number of clock cycles. This core supports up to 16 clock cycle delays.

The Avalon-ST Delay core is SOPC Builder-ready and integrates easily into any SOPC Builder-generated
system.

Functional Description
Figure 22-1: Avalon-ST Delay Core

£ >

In_Data o 5
> 0 E] Out_Data
s Avalon-ST @ >

K] Delay Core »

< 2

Clock D 2

The Avalon-ST Delay core adds a delay between the input and output interfaces. The core accepts all
transactions presented on the input interface and reproduces them on the output interface N cycles later
without changing the transaction.

The input interface delays the input signals by a constant (N) number of clock cycles to the corresponding
output signals of the Avalon-ST output interface. The Number Of Delay Clocks parameter defines the
constant (N) number, which must be between 0 and 16. The change of the In_valid signal is reflected on
the Out_valid signal exactly N cycles later.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Delay%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

22-2 Reset

Reset

UG-01085
2016.06.17

The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal. When the core asserts
the reset signal, the output signals are held at 0. After the reset signal is deasserted, the output signals
are held at 0 for N clock cycles. The delayed values of the input signals are then reflected at the output
signals after N clock cycles.

Interfaces

The Avalon-ST Delay core supports packetized and non-packetized interfaces with optional channel and
error signals. This core does not support backpressure.

Table 22-1: Properties of Avalon-ST Interfaces

T

Backpressure Not supported.

Data Width Configurable.
Channel Supported (optional).
Error Supported (optional).
Packet Supported (optional).

For more information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

Parameters

Table 22-2: Configurable Parameters

Parameter Legal Default Description
Values Value

Number Of Delay 0to 16 Specifies the delay the core introduces, in clock cycles.

Clocks The value of 0 is supported for some cases of parameter-
ized systems in which no delay is required.

Data Width 1-512 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1-512 The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-
bit symbols.

Use Packets Oorl Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket,
endofpacket, and empty signals.

Use Channel Oorl The option to enable or disable the channel signal.

Channel Width 0-8 The width of the channel signal on the data interfaces.

This parameter is disabled when Use Channel is set to 0.

Altera Corporation

Avalon-ST Delay Core

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Delay%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Parameters

Parameter Legal Default Description
Values Value

Max Channels 0-255 The maximum number of channels that a data interface
can support. This parameter is disabled when Use
Channel is set to 0.

Use Error Oorl The option to enable or disable the error signal.

Error Width 0-31 The width of the error signal on the output interfaces. A
value of 0 indicates that the error signal is not in use. This
parameter is disabled when Use Error is set to 0.

Use packets Oorl Setting this parameter to 1 enables packet support on the
Avalon-ST data interfaces.

Use fill level Oorl Setting this parameter to 1 enables the Avalon-MM status
interface.

Number of almost-full |0to 2 The number of almost-full thresholds to enable. Setting

thresholds this parameter to 1 enables Use almost-full threshold 1.
Setting it to 2 enables both Use almost-full threshold 1
and Use almost-full threshold 2.

Number of almost- 0to2 The number of almost-empty thresholds to enable.

empty thresholds Setting this parameter to 1 enables Use almost-empty
threshold 1. Setting it to 2 enables both Use almost-
empty threshold 1 and Use almost-empty threshold 2.

Section available 0to2 Specify the amount of data to be delivered to the output

threshold Address interface. This parameter applies only when packet

Width support is disabled.

Packet buffer mode Oorl Setting this parameter to 1 causes the core to deliver only
full packets to the output interface. This parameter
applies only when Use packets is set to 1.

Drop on error Oorl Setting this parameter to 1 causes the core to drop
packets at the Avalon-ST data sink interface if the error
signal on that interface is asserted. Otherwise, the core
accepts the packet and sends it out on the Avalon-ST data
source interface with the same error. This parameter
applies only when packet buffer mode is enabled.

Use almost-full Oorl This threshold indicates that the FIFO is almost full. It is

threshold 1 enabled when the parameter Number of almost-full
threshold is set to 1 or 2.

Use almost-full Oorl This threshold is an initial indication that the FIFO is

threshold 2 getting full. It is enabled when the parameter Number of
almost-full threshold is set to 2.

Use almost-empty Oorl This threshold indicates that the FIFO is almost empty. It

threshold 1

is enabled when the parameter Number of almost-empty
threshold is set to 1 or 2.

Avalon-ST Delay Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Delay%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

UG-01085
2016.06.17

Parameter Legal Default Description
Values Value

Use almost-empty Oorl

threshold 2

This threshold is an initial indication that the FIFO is
getting empty. It is enabled when the parameter Number
of almost-empty threshold is set to 2.

Document Revision History

Table 22-3: Document Revision History

I I S

December 2010 v10.1.0

» «

Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0

No change from previous release.

January 2010 v9.1.1

Initial release.

Altera Corporation

Avalon-ST Delay Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Delay%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Splitter Core 2 3

2016.06.17

UG-01085 X subscribe C] Send Feedback

Avalon-ST Splitter Core

Core Overview

The Avalon® Streaming (Avalon-ST) Splitter core allows you to replicate transactions from an Avalon-ST
source interface to multiple Avalon-ST sink interfaces. This core can support from 1 to 16 outputs.

The Avalon-ST Splitter core is SOPC Builder-ready and integrates easily into any SOPC Builder-
generated system.

Functional Description
Figure 23-1: Avalon-ST Splitter Core

Output 0

>
In_Data

—

0 92In0S
1S-uoreny

Avalon-ST
Splitter Core

Avalon-ST Sink
(X}

Out_Data

Clock —»

Output N

N 92In0S
1S-uoreny

The Avalon-ST Splitter core copies all input signals from the input interface to the corresponding output
signals of each output interface without altering the size or functionality. This include all signals except
for the ready signal.

The Avalon-ST Splitter core includes a clock signal used by SOPC Builder to determine the Avalon-ST
interface and clock domain that this core resides in. Because the clock signal is unused internally, no
latency is introduced when using this core.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon-ST%20Splitter%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

23-2 Backpressure

Backpressure

UG-01085
2016.06.17

The Avalon-ST Splitter core handles backpressure by AND-ing the ready signals from all of the output
interfaces and sending the result to the input interface. This way, if any output interface deasserts the
ready signal, the input interface receives the deasserted ready signal as well. This mechanism ensures that
backpressure on any of the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the Out_Vvalid signals on all other output interfaces
are gated when backpressure is applied from one output interface. In this case, when any output interface
deasserts its ready signal, the Out_valid signals on the rest of the output interfaces are deasserted as well.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-gated out_valid
signal when backpressure is applied. In this case, when an output interface deasserts its ready signal, the
out_Valid signals on the rest of the output interfaces are not affected.

Because the logic is purely combinational, the core introduces no latency.

Interfaces

The Avalon-ST Splitter core supports packetized and non-packetized interfaces with optional channel and
error signals. The core propagates backpressure from any output interface to the input interface.

Table 23-1: Properties of Avalon-ST Interfaces

T e T ey

Backpressure Ready latency = 0.
Data Width Configurable.
Channel Supported (optional).
Error Supported (optional).
Packet Supported (optional).

For more information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

Parameters

Table 23-2: Configurable Parameters

Parameter Legal Default Description
Values Value

Number Of 1to 16 The number of output interfaces. The value of 1 is supported

Outputs for some cases of parameterized systems in which no
duplicated output is required.

Qualify Valid Oor1l Determines whether the Out_Vvalid signal is gated or non-

Out gated when backpressure is applied.

Data Width 1-512 The width of the data on the Avalon-ST data interfaces.

Altera Corporation

Avalon-ST Splitter Core

D Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Splitter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Parameters

Parameter Legal Default Description
Values Value

Bits Per Symbol | 1-512 The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-bit
symbols.

Use Packets Oorl Indicates whether or not packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and empty
signals.

Use Channel Oorl The option to enable or disable the channel signal.

Channel Width | 0-8 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 The maximum number of channels that a data interface can
support. This parameter is disabled when Use Channel is set to
0.

Use Error Oorl The option to enable or disable the error signal.

Error Width 0-31 The width of the error signal on the output interfaces. A value
of 0 indicates that the error signal is not used. This parameter is
disabled when Use Error is set to 0.

Use packets Oorl Setting this parameter to 1 enables packet support on the
Avalon-ST data interfaces.

Use fill level Oorl Setting this parameter to 1 enables the Avalon-MM status
interface.

Number of 0to2 The number of almost-full thresholds to enable. Setting this

almost-full parameter to 1 enables Use almost-full threshold 1. Setting it

thresholds to 2 enables both Use almost-full threshold 1 and Use almost-
full threshold 2.
Number of 0to2 The number of almost-empty thresholds to enable. Setting this
almost-empty parameter to 1 enables Use almost-empty threshold 1. Setting
thresholds it to 2 enables both Use almost-empty threshold 1 and Use
almost-empty threshold 2.
Section available |0 to 2 Specify the amount of data to be delivered to the output
threshold Address interface. This parameter applies only when packet support is
Width disabled.

Packet buffer Oorl Setting this parameter to 1 causes the core to deliver only full

mode packets to the output interface. This parameter applies only

when Use packets is set to 1.

Avalon-ST Splitter Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Splitter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

UG-01085
2016.06.17

Parameter Legal Default Description
Values Value

Drop on error Oorl Setting this parameter to 1 causes the core to drop packets at
the Avalon-ST data sink interface if the error signal on that
interface is asserted. Otherwise, the core accepts the packet and
sends it out on the Avalon-ST data source interface with the
same error. This parameter applies only when packet buffer
mode is enabled.

Use almost-full |0 or1 This threshold indicates that the FIFO is almost full. It is

threshold 1 enabled when the parameter Number of almost-full threshold
issetto 1 or 2.

Use almost-full |0 or1 This threshold is an initial indication that the FIFO is getting

threshold 2 full. It is enabled when the parameter Number of almost-full
threshold is set to 2.

Use almost- Oor1l This threshold indicates that the FIFO is almost empty. It is

empty threshold enabled when the parameter Number of almost-empty

1 threshold is set to 1 or 2.

Use almost- Oor1l This threshold is an initial indication that the FIFO is getting

empty threshold empty. It is enabled when the parameter Number of almost-

2 empty threshold is set to 2.

Document Revision History

Table 23-3: Document Revision History

I I S

December 2010 | y10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

January 2010 v9.1.1 Initial release.

Avalon-ST Splitter Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon-ST%20Splitter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Scatter-Gather DMA Controller Core 2 4

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The Scatter-Gather Direct Memory Access (SG-DMA) controller core implements high-speed data
transfer between two components. You can use the SG-DMA controller core to transfer data from:

e Memory to memory
+ Data stream to memory
« Memory to data stream

The SG-DMA controller core transfers and merges non-contiguous memory to a continuous address
space, and vice versa. The core reads a series of descriptors that specify the data to be transferred.

For applications requiring more than one DMA channel, multiple instantiations of the core can
provide the required throughput. Each SG-DMA controller has its own series of descriptors specifying
the data transfers. A single software module controls all of the DMA channels.

For the Nios" IT processor, device drivers are provided in the Hardware Abstraction Layer (HAL)
system library, allowing software to access the core using the provided driver.

Example Systems

The block diagram below shows a SG-DMA controller core for the DMA subsystem of a printed circuit
board. The SG-DMA core in the FPGA reads streaming data from an internal streaming component and
writes data to an external memory. A Nios II processor provides overall system control.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Scatter-Gather%20DMA%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

24-2 Comparison of SG-DMA Controller Core and DMA Controller Core 2016.06.17

Figure 24-1: SG-DMA Controller Core with Streaming Peripheral and External Memory

Altera FPGA
SOPC Builder Syste m

Scatter Gather DMA Control ler Core

System Interco nnect Fa bric

Table

L Avalon-MM Master Port

Avalon- siave

SNK

Avalon-ST Sink Port

DDR2
SDRAM

The figure below shows a different use of the SG-DMA controller core, where the core transfers data
between an internal and external memory. The host processor and memory are connected to a system
bus, typically either a PCI Express or Serial RapidIO™.

Figure 24-2: SG-DMA Controller Core with Internal and External Memory

Altera FPGA
SOPC Builder Syste m

Scatter Gather DMA Controller Core

DMA Read/
Write

n Avalon-MM Master Port

Bl Avaion-MM Slave Port

10 Breakout

Process o Main Memory

s
e Desc riptor
Table

Comparison of SG-DMA Controller Core and DMA Controller Core

The SG-DMA controller core provides a significant performance enhancement over the previously
available DMA controller core, which could only queue one transfer at a time. Using the DMA Controller
core, a CPU had to wait for the transfer to complete before writing a new descriptor to the DMA slave
port. Transfers to non-contiguous memory could not be linked; consequently, the CPU overhead was
substantial for small transfers, degrading overall system performance. In contrast, the SG-DMA controller
core reads a series of descriptors from memory that describe the required transactions and performs all of
the transfers without additional intervention from the CPU.

Resource Usage and Performance

Resource utilization for the core is 600-1400 logic elements, depending upon the width of the datapath,
the parameterization of the core, the device family, and the type of data transfer. The table below provides

Altera Corporation Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . o 943
2016.06.17 Functional Description =

the estimated resource usage for a SG-DMA controller core used for memory to memory transfer. The
core is configurable and the resource utilization varies with the configuration specified.

Table 24-1: SG-DMA Estimated Resource Usage

Datapath Cyclone® Il Stratix" Stratix Il
(LEs) (ALUTS)
8-bit datapath 850 650 600
32-bit datapath 1100 850 700
64-bit datapath 1250 1250 800

The core operating frequency varies with the device and the size of the datapath. The table below provides
an example of expected performance for SG-DMA cores instantiated in several different device families.

Table 24-2: SG-DMA Peak Performance

Cyclone IT 64 bits 150 MHz 9.6 Gbps
Cyclone IIT 64 bits 160 MHz 10.2 Gbps
Stratix II/Stratix II | 64 bits 250 MHz 16.0 Gbps
GX

Stratix I1I 64 bits 300 MHz 19.2 Gbps

Functional Description

The SG-DMA controller core comprises three major blocks: descriptor processor, DMA read, and DMA
write. These blocks are combined to create three different configurations:

» Memory to memory
» Memory to stream
o Stream to memory

The type of devices you are transferring data to and from determines the configuration to implement.
Examples of memory-mapped devices are PCI, PCle and most memory devices. The Triple Speed
Ethernet MAC, DSP MegaCore functions and many video IPs are examples of streaming devices. A
recompilation is necessary each time you change the configuration of the SG-DMA controller core.

Functional Blocks and Configurations

The following sections describe each functional block and configuration.

Scatter-Gather DMA Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
24-4 Functional Blocks and Configurations 2016.06.17

Descriptor Processor

The descriptor processor reads descriptors from the descriptor list via its Avalon® Memory-Mapped
(MM) read master port and pushes commands into the command FIFOs of the DMA read and write
blocks. Each command includes the following fields to specify a transfer:

o Source address

o Destination address

« Number of bytes to transfer

o Increment read address after each transfer

o Increment write address after each transfer

+ Generate start of packet (SOP) and end of packet (EOP)

After each command is processed by the DMA read or write block, a status token containing informa-
tion about the transfer such as the number of bytes actually written is returned to the descriptor
processor, where it is written to the respective fields in the descriptor.

DMA Read Block

The DMA read block is used in memory-to-memory and memory-to-stream configurations. The block
performs the following operations:

o Reads commands from the input command FIFO.
» Reads a block of memory via the Avalon-MM read master port for each command.
« Pushes data into the data FIFO.

If burst transfer is enabled, an internal read FIFO with a depth of twice the maximum read burst size is
instantiated. The DMA read block initiates burst reads only when the read FIFO has sufficient space to
buffer the complete burst.

DMA Write Block

The DMA write block is used in memory-to-memory and stream-to-memory configurations. The block
reads commands from its input command FIFO. For each command, the DMA write block reads data
from its Avalon-ST sink port and writes it to the Avalon-MM master port.

If burst transfer is enabled, an internal write FIFO with a depth of twice the maximum write burst size is
instantiated. Each burst write transfers a fixed amount of data equals to the write burst size, except for the
last burst. In the last burst, the remaining data is transferred even if the amount of data is less than the
write burst size.

Memory-to-Memory Configuration

Memory-to-memory configurations include all three blocks: descriptor processor, DMA read, and DMA
write. An internal FIFO is also included to provide buffering and flow control for data transferred
between the DMA read and write blocks.

The example below illustrates one possible memory-to-memory configuration with an internal Nios II
processor and descriptor list.

Altera Corporation Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Figure 24-3: Example of Memory-to-Memory Configuration

Functional Blocks and Configurations

[Altera FPG A

SOPC Builder System

Scatter Gather DMA Controller Core

System _Interconnect Fabric

Avalon-MM Master Port

Avalon-MM Slave Port

SRC| Avalon-ST Source Port

snk| Avalon-sT sink Port

DDR2
SDRA M

1

Memory-to-Stream Configuration

Memory-to-stream configurations include the descriptor processor and DMA read blocks.

24-5

In this example, the Nios II processor and descriptor table are in the FPGA. Data from an external DDR2
SDRAM is read by the SG-DMA controller and written to an on-chip streaming peripheral.

Figure 24-4: Example of Memory-to-Stream Configuration

Altera FPGA

SOPC Builder System

Scatter Gather DMA Controller Core
e

DMA Read Block

System_Interconnec t Fabric

Descriptor
Tab e

Avalon-MM Master Port

Avalon-MM Skave Port

B Avalon-sT Source Port

Bl :]-]-

Avalon-ST Sink Port

T
DDR2
SDRAM

Stream-to-Memory Configuration

Stream-to-memory configurations include the descriptor processor and DMA write blocks. This configu-
ration is similar to the memory-to-stream configuration as the figure below illustrates.

Scatter-Gather DMA Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

24-6 DMA Descriptors 2016.06.17

Figure 24-5: Example of Stream-to-Memory Configuration

Altera FPG A
SOPC Builder Syst em

Scatter Gather DMA Controler Core

Avalon-MM Master Port

Avalon-MM Slave Port

SRC
BN Avalon-ST Sink Port

RC| Avalon-ST Source Port

@
[

DMA Descriptors

DMA descriptors specify data transfers to be performed. The SG-DMA core uses a dedicated interface to
read and write the descriptors. These descriptors, which are stored as a linked list, can be stored on an on-
chip or off-chip memory and can be arbitrarily long.

Storing the descriptor list in an external memory frees up resources in the FPGA; however, an external
descriptor list increases the overhead involved when the descriptor processor reads and updates the list.
The SG-DMA core has an internal FIFO to store descriptors read from memory, which allows the core to
perform descriptor read, execute, and write back operations in parallel, hiding the descriptor access and
processing overhead.

The descriptors must be initialized and aligned on a 32-bit boundary. The last descriptor in the list must
have its OWNED_BY_HW bit set to 0 because the core relies on a cleared OWNED_BY_HW bit to stop processing.

See the DMA Descriptors section for the structure of the DMA descriptor.

Descriptor Processing
The following steps describe how the DMA descriptors are processed:

1. Software builds the descriptor linked list. See the Building and Updating Descriptors List section for
more information on how to build and update the descriptor linked list.

2. Software writes the address of the first descriptor to the next_descriptor_pointer register and
initiates the transfer by setting the RUN bit in the control register to 1. See the Software Programming
Model section for more information on the registers.

On the next clock cycle following the assertion of the RUN bit, the core sets the BUSY bit in the status
register to 1 to indicate that descriptor processing is executing.

3. The descriptor processor block reads the address of the first descriptor from the
next_descriptor_pointer register and pushes the retrieved descriptor into the command FIFO,
which feeds commands to both the DMA read and write blocks. As soon as the first descriptor is read,
the block reads the next descriptor and pushes it into the command FIFO. One descriptor is always
read in advance thus maximizing throughput.

4. The core performs the data transfer.

Altera Corporation Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Error Conditions 24-7

 In memory-to-memory configurations, the DMA read block receives the source address from its
command FIFO and starts reading data to fill the FIFO on its stream port until the specified
number of bytes are transferred. The DMA read block pauses when the FIFO is full until the FIFO
has enough space to accept more data.

The DMA write block gets the destination address from its command FIFO and starts writing until
the specified number of bytes are transferred. If the data FIFO ever empties, the write block pauses
until the FIFO has more data to write.

o In memory-to-stream configurations, the DMA read block reads from the source address and
transfers the data to the core’s streaming port until the specified number of bytes are transferred or
the end of packet is reached. The block uses the end-of-packet indicator for transfers with an
unknown transfer size. For data transfers without using the end-of-packet indicator, the transfer
size must be a multiple of the data width. Otherwise, the block requires extra logic and may impact
the system performance.

« In stream-to-memory configurations, the DMA write block reads from the core’s streaming port
and writes to the destination address. The block continues reading until the specified number of
bytes are transferred.

The descriptor processor block receives a status from the DMA read or write block and updates the

DESC_CONTROL, DESC_STATUS, and ACTUAL_BYTES_TRANSFERRED fields in the descriptor. The

OWNED_BY_HW bit in the DESC_CONTROL field is cleared unless the PARK bit is set to 1.

Once the core starts processing the descriptors, software must not update descriptors with
OWNED_BY_HW bit set to 1. It is only safe for software to update a descriptor when its OWNED_BY_HW bit is
cleared.

The SG-DMA core continues processing the descriptors until an error condition occurs and the
STOP_DMA_ER bit is set to 1, or a descriptor with a cleared OWNED_BY_HW bit is encountered.

Building and Updating Descriptor List

Altera recommends the following method of building and updating the descriptor list:

1.

Build the descriptor list and terminate the list with a non-hardware owned descriptor (OWNED_BY_HW =
0). The list can be arbitrarily long.

Set the interrupt 1E_CHAIN_COMPLETED.

Write the address of the first descriptor in the first list to the next_descriptor_pointer register and
set the RUN bit to 1 to initiate transfers.

While the core is processing the first list, build a second list of descriptors.

When the SD-DMA controller core finishes processing the first list, an interrupt is generated. Update
the next_descriptor_pointer register with the address of the first descriptor in the second list. Clear
the RUN bit and the status register. Set the RUN bit back to 1 to resume transfers.

If there are new descriptors to add, always add them to the list which the core is not processing. For
example, if the core is processing the first list, add new descriptors to the second list and so forth.

This method ensures that the descriptors are not updated when the core is processing them. Because
the method requires a response to the interrupt, a high-latency interrupt may cause a problem in
systems where stalling data movement is not possible.

Error Conditions

The SG-DMA core has a configurable error width. Error signals are connected directly to the Avalon-ST
source or sink to which the SG-DMA core is connected.

Scatter-Gather DMA Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-8 Error Conditions

UG-01085
2016.06.17

The list below describes how the error signals in the SG-DMA core are implemented in the folowing

configurations:

« Memory-to-memory configuration

No error signals are generated. The error field in the register and descriptor is hardcoded to 0.

« Memory-to-stream configuration

If you specified the usage of error bits in the core, the error bits are generated in the Avalon-ST source
interface. These error bits are hardcoded to 0 and generated in compliance with the Avalon-ST slave

interfaces.

+ Stream-to-memory configuration

If you specified the usage of error bits in the core, error bits are generated in the Avalon-ST sink
interface. These error bits are passed from the Avalon-ST sink interface and stored in the registers and

descriptor.

The table below lists the error signals when the core is operating in the memory-to-stream conﬁggra-
tion and connected to the transmit FIFO interface of the Altera Triple-Speed Ethernet MegaCore

function.

Table 24-3: Avalon-ST Transmit Error Types

TSE_transmit_error[0]

Transmit Frame Error. Asserted to indicate that the
transmitted frame should be viewed as invalid by the Ethernet
MAC. The frame is then transferred onto the GMII interface
with an error code during the frame transfer.

The table below lists the error signals when the core is operating in the stream-to-memory configura-
tion and connected to the transmit FIFO interface of the Triple-Speed Ethernet MegaCore function.

Table 24-4: Avalon-ST Receive Error Types

TSE_receive_error[0]

Receive Frame Error. This signal indicates that an error has
occurred. It is the logical OR of receive errors 1 through 5.

TSE_receive_error[1]

Invalid Length Error. Asserted when the received frame has an
invalid length as defined by the IEEE 802.3 standard.

TSE_receive_error[2]

CRC Error. Asserted when the frame has been received with a
CRC-32 error.

TSE_receive_error[3]

Receive Frame Truncated. Asserted when the received frame
has been truncated due to receive FIFO overflow.

TSE_receive_error[4]

Received Frame corrupted due to PHY error. (The PHY has
asserted an error on the receive GMII interface.)

TSE_receive_error[5]

Collision Error. Asserted when the frame was received with a
collision.

Each streaming core has a different set of error codes. Refer to the respective user guides for the codes.

Altera Corporation

Scatter-Gather DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Parameters

Table 24-5: Configurable Parameters

Parameters 24-9

Transfer mode | Memory To Configuration to use. For more information about these configu-
Memory rations, see the Memory-to-Memory Configuration section.
Memory To
Stream
Stream To
Memory
Enable bursting | On/Off If this option is on, the descriptor processor block uses Avalon-
on descriptor read MM bursting when fetching descriptors and writing them back in
master memory. With 32-bit read and write ports, the descriptor
processor block can fetch the 256-bit descriptor by performing 8-
word burst as opposed to eight individual single-word transac-
tions.
Allow unaligned | On/Off If this option is on, the core allows accesses to non-word-aligned
transfers addresses. This option doesn’t apply for burst transfers.
Unaligned transfers require extra logic that may negatively impact
system performance.
Enable burst On/Off Turning on this option enables burst reads and writes.
transfers
Read burstcount |1-16 The width of the read burstcount signal. This value determines
signal width the maximum burst read size.
Write burstcount | 1-16 The width of the write burstcount signal. This value determines
signal width the maximum burst write size.
Data width 8,16, 32, 64 The data width in bits for the Avalon-MM read and write ports.
Source error 0-7 The width of the error signal for the Avalon-ST source port.
width
Sink error width |0 -7 The width of the error signal for the Avalon-ST sink port.
Data transfer 2,4,8,16,32,64 | The depth of the internal data FIFO in memory-to-memory
FIFO depth configurations with burst transfers disabled.

Simulation Considerations

The SG-DMA controller core should be given a higher priority (lower IRQ value) than most of the
components in a system to ensure high throughput.

Signals for hardware simulation are automatically generated as part of the Nios II simulation process
available in the Nios II IDE.

Scatter-Gather DMA Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

24-10 Software Programming Model 2016.06.17

Software Programming Model

The following sections describe the software programming model for the SG-DMA controller core.

HAL System Library Support

The Altera-provided driver implements a HAL device driver that integrates into the HAL system library
for Nios II systems. HAL users should access the SG-DMA controller core via the familiar HAL API and
the ANSI C standard library.

Software Files

The SG-DMA controller core provides the following software files. These files provide low-level access to
the hardware and drivers that integrate into the Nios II HAL system library. Application developers
should not modify these files.

« altera_avalon_sgdma_regs.h—defines the core's register map, providing symbolic constants to access
the low-level hardware

« altera_avalon_sgdma.h—provides definitions for the Altera Avalon SG-DMA buffer control and
status flags.

« altera_avalon_sgdma.c—provides function definitions for the code that implements the SG-DMA
controller core.

« altera_avalon_sgdma_descriptor.h—defines the core's descriptor, providing symbolic constants to
access the low-level hardware.

Register Maps

The SG-DMA controller core has three registers accessible from its Avalon-MM interface; status,
control and next_descriptor_pointer. Software can configure the core and determines its current
status by accessing the registers.

The control/status register has a 32-bit interface without byte-enable logic, and therefore cannot be
properly accessed by a master with narrower data width than itself. To ensure correct operation of the
core, always access the register with a master that is at least 32 bits wide.

Table 24-6: Register Map

32-bit Register Name Reset Description

Word Value

Offset

base + |status 0 This register indicates the core’s current status
0 such as what caused the last interrupt and if the

core is still processing descriptors. See the
status Register Map table for the status

register map.
base + |version 1 Indicate the hardware version number. Only
1 being used by software driver for software

backward compatibility purpose.

Altera Corporation Scatter-Gather DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Register Maps ~ 24-11
32-bit Register Name Description
Word
Offset
base + |control 0 This register specifies the core’s behavior such
4 as what triggers an interrupt and when the core

is started and stopped. The host processor can
configure the core by setting the register bits
accordingly. See the Control Register Bit Map
table for the control register map.

base + |next_descriptor_pointer |0 This register contains the address of the next
8 descriptor to process. Set this register to the
address of the first descriptor as part of the
system initialization sequence.

Altera recommends that user applications clear
the RUN bit in the control register and wait
until the BUSY bit of the status register is set to
0 before reading this register.

Table 24-7: Control Register Bit Map

R S) R

IE_ERROR When this bit is set to 1, the core generates an
interrupt if an Avalon-ST error occurs during
descriptor processing. (1)

1 | 1IE_EOP_ENCOUNTERED R/W When this bit is set to 1, the core generates an
interrupt if an EOP is encountered during
descriptor processing. (1)

2 | 1IE_DESCRIPTOR_COMPLETED |R/W When this bit is set to 1, the core generates an
interrupt after each descriptor is processed. (1)

3 | IE_CHAIN_COMPLETED R/W When this bit is set to 1, the core generates an
interrupt after the last descriptor in the list is
processed, that is when the core encounters a
descriptor with a cleared OWNED_BY_HW bit. (1)

4 | 1E_GLOBAL R/W When this bit is set to 1, the core is enabled to
generate interrupts.

Scatter-Gather DMA Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-12

Register Maps

UG-01085
2016.06.17

R S S,

Set this bit to 1 to start the descriptor processor
block which subsequently initiates DMA transac-
tions. Prior to setting this bit to 1, ensure that the
register next_descriptor_pointer is updated with
the address of the first descriptor to process. The
core continues to process descriptors in its queue as
long as this bit is 1.

Clear this bit to stop the core from processing the
next descriptor in its queue. If this bit is cleared in
the middle of processing a descriptor, the core
completes the processing before stopping. The host
processor can then modify the remaining descrip-
tors and restart the core.

STOP_DMA_ER

R/W

Set this bit to 1 to stop the core when an Avalon-ST
error is encountered during a DMA transaction.
This bit applies only to stream-to-memory configu-
rations.

IE_MAX_DESC_PROCESSED

R/W

Set this bit to 1 to generate an interrupt after the
number of descriptors specified by MAX_DESC_
PROCESSED are processed.

15

. | MAX_DESC_PROCESSED

R/W

Specifies the number of descriptors to process
before the core generates an interrupt.

16

SW_RESET

R/W

Software can reset the core by writing to this bit
twice. Upon the second write, the core is reset. The
logic which sequences the software reset process
then resets itself automatically.

Executing a software reset when a DMA transfer is
active may result in permanent bus lockup until the
next system reset. Hence, Altera recommends that
you use the software reset as your last resort.

17

PARK

R/W

Seting this bit to 0 causes the SG-DMA controller
core to clear the OWNED_BY_HW bit in the descriptor
after each descriptor is processed. If the PARK bit is
set to 1, the core does not clear the OWNED_BY_HW
bit, thus allowing the same descriptor to be
processed repeatedly without software intervention.
You also need to set the last descriptor in the list to
point to the first one.

18

DESC_POLL_EN

R/W

Set this bit to 1 to enable polling mode. When you
set this bit to 1, the core continues to poll for the
next descriptor until the OWNED_BY_HW bit is set. The
core also updates the descriptor pointer to point to
the current descriptor.

19

Reserved

Altera Corporation

Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Register Maps ~ 24-13
B S) O S
TIMEOUT_COUNTER Specifies the number of clocks to wait before polling
.30 again. The valid range is 1 to 255. The core also

updates the next_desc_ptr field so that it points to
the next descriptor to read.

31 | CLEAR_INTERRUPT R/IW Set this bit to 1 to clear pending interrupts.
Table 24-7 :

1. All interrupts are generated only after the descriptor is updated.

Altera recommends that you read the status register only after the RUN bit in the control register is
cleared.

Table 24-8: Status Register Bit Map

I S I

ERROR R/C (1) (2) | A value of 1 indicates that an Avalon-ST error
was encountered during a transfer.

1 EOP_ENCOUNTERED R/C A value of 1 indicates that the transfer was
terminated by an end-of-packet (EOP) signal
generated on the Avalon-ST source interface.
This condition is only possible in stream-to-
memory configurations.

2 DESCRIPTOR_COMPLETED |R/C (1) (2) |A value of 1 indicates that a descriptor was
processed to completion.

3 CHAIN_COMPLETED R/C (1) (2) |A value of 1 indicates that the core has
completed processing the descriptor chain.
4 BUSY R (1) (3) A value of 1 indicates that descriptors are being

processed. This bit is set to 1 on the next clock
cycle after the RUN bit is asserted and does not
get cleared until one of the following event
occurs:

Descriptor processing completes and the RUN bit
is cleared.

An error condition occurs, the STOP_DMA_ER bit
is set to 1 and the processing of the current
descriptor completes.

5.. |Reserved
31
Table 24-8 :

1. This bit must be cleared after a read is performed. Write one to clear this bit.

2. This bit is updated by hardware after each DMA transfer completes. It remains set until
software writes one to clear.

3. This bit is continuously updated by the hardware.

Scatter-Gather DMA Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-14 DMA Descriptors

DMA Descriptors

UG-01085
2016.06.17

See the Data Structure section for the structure definition.

Table 24-9: DMA Descriptor Structure

Field Names

 pedNames
Byte Offset
(| sfa] Jwlsl [s{7]]| o]

base source

base + 4 |Reserved

base + 8 |destination

base + Reserved
12

base + next_desc_ptr
16

base + Reserved
20

base + Reserved
24

bytes_to_transfer

base + desc_control
28

desc_status actual_bytes_transferred

Table 24-10: DMA Descriptor Field Description

source R/W Specifies the address of data to be read. This address is
set to 0 if the input interface is an Avalon-ST interface.

destination R/W Specifies the address to which data should be written.
This address is set to 0 if the output interface is an
Avalon-ST interface.

next_desc_ptr R/W Specifies the address of the next descriptor in the linked
list.

bytes_to_transfer R/W Specifies the number of bytes to transfer. If this field is
0, the SG-DMA controller core continues transferring
data until it encounters an EOP.

read_ R/W Specifies the burst length in bytes for a burst read from
Avalon devices (memory).

write_ R/W Specifies the burst length in bytes for a burst write to
Avalon devices (memory).

actual_bytes_ R Specifies the number of bytes that are successfully

transferred

transferred by the core. This field is updated after the
core processes a descriptor.

Altera Corporation

Scatter-Gather DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 DMA Descriptors 24-15
desc_status R/W This field is updated after the core processes a
descriptor. See DESC_STATUS Bit Map for the bit
map of this field.
desc_control R/W Specifies the behavior of the core. This field is updated
after the core processes a descriptor. See the DESC_
CONTROL Bit Map table for descriptions of each bit.

Table 24-11: DESC_CONTROL Bit Map

GENERATE_EOP When this bit is set to 1,the DMA read block asserts
the EOP signal on the final word.
1 |READ_FIXED_ADDRESS R/W This bit applies only to Avalon-MM read master

ports. When this bit is set to 1, the DMA read block
does not increment the memory address. When this
bit is set to 0, the read address increments after each
read.

2 |WRITE_FIXED_ADDRESS R/W This bit applies only to Avalon-MM write master
ports. When this bit is set to 1, the DMA write block
does not increment the memory address. When this
bit is set to 0, the write address increments after each
write.

In memory-to-stream configurations, the DMA read
block generates a start-of-packet (SOP) on the first
word when this bit is set to 1.

[6: | Reserved — —

3]

3. | AVALON-ST_CHANNEL_ R/W The DMA read block sets the channel signal to this

. 6 | NUMBER value for each word in the transaction. The DMA
write block replaces this value with the channel
number on its sink port.

7 |OWNED_BY_ HW R/W This bit determines whether hardware or software

has write access to the current register.

When this bit is set to 1, the core can update the
descriptor and software should not access the
descriptor due to the possibility of race conditions.
Otherwise, it is safe for software to update the
descriptor.

After completing a DMA transaction, the descriptor processor block updates the desc_status field to
indicate how the transaction proceeded.

Scatter-Gather DMA Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

24-16 Timeouts 2016.06.17

Table 24-12: DESC_STATUS Bit Map

I T 7 O

ERROR_O .. ERROR_ Each bit represents an error that occurred on the
7 Avalon-ST interface. The context of each error is
defined by the component connected to the Avalon-ST
interface.
Timeouts

The SG-DMA controller does not implement internal counters to detect stalls. Software can instantiate a
timer component if this functionality is required.

Programming with SG-DMA Controller

This section describes the device and descriptor data structures, and the application programming
interface (API) for the SG-DMA controller core.

Data Structure

Table 24-13: Device Data Structure

typedef struct alt_sgdma_dev

{

alt_llist llist; // Device linked-list entry

const char *name; // Name of SGDMA in SOPC System
void *base; // Base address of SGDMA

alt_u32 *descriptor_base; // reserved

alt_u32 next_index; // reserved

alt_u32 num_descriptors; // reserved
alt_sgdma_descriptor *current_descriptor; // reserved
alt_sgdma_descriptor *next_descriptor; // reserved
alt_avalon_sgdma_callback callback; // Callback routine pointer
void *callback_context; // Callback context pointer
alt_u32 chain_control; // Value OR'd into control reg

} alt_sgdma_dev;

Altera Corporation Scatter-Gather DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Table 24-14: Descriptor Data Structure

typedef struct {

alt_u32 *read_addr;
alt_u32 read_addr_pad;
alt_u32 *write_addr;
alt_u32 write_addr_pad;
alt_u32 *next;

alt_u32 next_pad;

alt_ul6 bytes_to_transfer;

SG-DMA API 24-17

alt_u8 read_burst; /* Reserved field. Set to 0. */

alt_u8 write_burst;/* Reserved field. Set to 0. */

alt_ul6 actual_bytes_transferred;
alt_u8 status;

alt_u8 control;

} alt_avalon_sgdma_packed alt_sgdma_descriptor;

SG-DMA API

Table 24-15: Function List

e T i

alt_avalon_sgdma_do_async_
transfer()

Starts a non-blocking transfer of a descriptor chain.

alt_avalon_sgdma_do_sync_
transfer()

Starts a blocking transfer of a descriptor chain. This function
blocks both before transfer if the controller is busy and until the

requested transfer has completed.

alt_avalon_sgdma_construct_mem_
to__mem_desc()

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_
stream_to_mem_desc()

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-ST to Avalon-MM transfer. The
function automatically terminates the descriptor chain with a

NULL descriptor.

alt_avalon_sgdma_construct_mem_
to_stream_desc()

Constructs a single SG-DMA descriptor in the specified

memory for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_enable_desc_

Enables descriptor polling mode. To use this feature, you need

poll() to make sure that the hardware supports polling.
alt_avalon_sgdma_disable desc_ Disables descriptor polling mode.
pol1()

Scatter-Gather DMA Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-18 alt_avalon_sgdma_do_async_transfer()

UG-01085
2016.06.17

I = B

alt_avalon_sgdma_check_ Reads the status of a given descriptor.

descriptor_status()

alt_avalon_sgdma_register_ Associates a user-specific callback routine with the SG-DMA

callback(Q

interrupt handler.

alt_avalon_sgdma_start() Starts the DMA engine. This is not required when alt_

avalon_sgdma_do_async_transfer()and alt_avalon_
sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_stop()

sgdma_do_async_transfer(Qand alt_avalon_sgdma_do_
sync_transfer() are used.

Stops the DMA engine. This is not required when alt_avalon_

alt_avalon_sgdma_open() Returns a pointer to the SG-DMA controller with the given

name.

alt_avalon_sgdma_do_async_transfer()

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor
*desc)

Thread-safe: | No.

Available from | Yes.

ISR:

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its
“next” descriptor field initialized either to a non-ready descriptor, or to the next
descriptor in the chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description: | Set up and begin a non-blocking transfer of one or more descriptors or a

descriptor chain. If the SG-DMA controller is busy at the time of this call, the
routine immediately returns EBUSY; the application can then decide how to
proceed without being blocked. If a callback routine has been previously
registered with this particular SG-DMA controller, the transfer is set up to issue
an interrupt on error, EOP, or chain completion. Otherwise, no interrupt is
registered and the application developer must check for and handle errors and
completion. The run bit is cleared before the begining of the transfer and is set to
1 to restart a new descriptor chain.

alt_avalon_sgdma_do_sync_transfer()

Prototype:

alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev, alt_sgdma_
descriptor *desc)

Altera Corporation

Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

alt_avalon_sgdma_construct_mem_to_mem_desc()

Thread-safe:

No.

Available from
ISR:

Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its
“next” descriptor field initialized either to a non-ready descriptor, or to the next
descriptor in the chain.

Returns: Returns the contents of the status register.

Description: | Sends a fully formed descriptor or list of descriptors to the SG-DMA controller

for transfer. This function blocks both before transfer, if the SG-DMA controller
is busy, and until the requested transfer has completed. If an error is detected
during the transfer, it is abandoned and the controller’s status register contents
are returned to the caller. Additional error information is available in the status
bits of each descriptor that the SG-DMA processed. The user application
searches through the descriptor or list of descriptors to gather specific error
information. The run bit is cleared before the begining of the transfer and is set
to 1 to restart a new descriptor chain.

alt_avalon_sgdma_construct_mem_to_mem_desc()

Prototype:

void alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descriptor
*desc, alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u32 *write_addr, alt_
ul6 length, int read_fixed, int write_fixed)

Thread-safe:

Yes.

Available from
ISR:

Yes.

Include:

<altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters:

*desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.
*write_addr—the first write address for the SG-DMA transfer.
length—the number of bytes for the transfer.

read_fixed—if non-zero, the SG-DMA reads from a fixed address.

write_fixed—if non-zero, the SG-DMA writes to a fixed address.

Returns:

void

Scatter-Gather DMA Controller Core

C] Send Feedback

24-19

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

24-20 alt_avalon_sgdma_construct_stream_to_mem_desc() 2016.06.17

Description:

This function constructs a single SG-DMA descriptor in the memory specified
in alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM
transfer. The function sets the OWNED_BY_HW bit in the descriptor's control
field, marking the completed descriptor as ready to run. The descriptor is
processed when the SG-DMA controller receives the descriptor and the RUN bit
is 1.

The next field of the descriptor being constructed is set to the address in *next.
The OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once
the SG-DMA completes processing of the *desc, it does not process the
descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor
chain, you can repeatedly call this function using the previous call's *next
pointer in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor
under construction as well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s
chain read and chain write Avalon master ports. Care must be taken to ensure
that both *desc and *next point to areas of memory mastered by the controller.

alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype:

void alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_descriptor
*desc, alt_sgdma_descriptor *next, alt_u32 *write_addr, alt_ul6 length_or_eop,
int write_fixed)

Thread-safe: | Yes.

Available from | Yes.

ISR:

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the “next” descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.
*write_addr—the first write address for the SG-DMA transfer.
length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the
transfer continues until an EOP signal is received from the Avalon-ST interface.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Altera Corporation

Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_avalon_sgdma_construct_mem_to_stream_desc() 24-21

Description: | This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM
transfer. The source (read) data for the transfer comes from the Avalon-ST
interface connected to the SG-DMA controller's streaming read port.

The function sets the OWNED_BY_HW bit in the descriptor's control field,
marking the completed descriptor as ready to run. The descriptor is processed
when the SG-DMA controller receives the descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next.
The OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once
the SG-DMA completes processing of the *desc, it does not process the
descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor
chain, you can repeatedly call this function using the previous call's *next pointer
in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor under
construction as well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s
chain read and chain write Avalon master ports. Care must be taken to ensure
that both *desc and *next point to areas of memory mastered by the controller.

alt_avalon_sgdma_construct_mem_to_stream_desc()

Prototype: void alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_descriptor
*desc, alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_ul6 length, int read_
fixed, int generate_sop, int generate_eop, alt_u8 atlantic_channel)

Thread-safe: | Yes.

Available Yes.
from ISR:
Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_

avalon_sgdma_regs.h>

Scatter-Gather DMA Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-22 alt_avalon_sgdma_enable_desc_poll()

Parameters:

*desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA reads from a fixed address.

generate_sop—if non-zero, the SG-DMA generates a SOP on the Avalon-ST
interface when commencing the transfer.

generate_eop—if non-zero, the SG-DMA generates an EOP on the Avalon-ST
interface when completing the transfer.

atlantic_channel—an 8-bit Avalon-ST channel number. Channels are currently
not supported. Set this parameter to 0.

Returns:

void

Description:

This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma-descriptor *desc for an Avalon-MM to Avalon-ST
transfer. The destination (write) data for the transfer goes to the Avalon-ST
interface connected to the SG-DMA controller's streaming write port. The
function sets the OWNED_BY_HW bit in the descriptor's control field, marking
the completed descriptor as ready to run. The descriptor is processed when the
SG-DMA controller receives the descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next.
The OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once
the SG-DMA completes processing of the *desc, it does not process the
descriptor at *next until its OWNED_BY_HW bit is set. To create a descriptor
chain, you can repeatedly call this function using the previous call's *next pointer
in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the
descriptor under construction as well as the next descriptor in the chain.
Descriptors must be in a memory device mastered by the SG-DMA controller’s
chain read and chain write Avalon master ports. Care must be taken to ensure
that both *desc and *next point to areas of memory mastered by the controller.

alt_avalon_sgdma_enable_desc_poll()

Prototype: void alt_avalon_sgdma_enable_desc_poll(alt_sgdma_dev *dev, alt_u32
frequency)

Thread-safe: Yes.

Available from | Yes.

ISR:

Altera Corporation

UG-01085
2016.06.17

Scatter-Gather DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 alt_avalon_sgdma_disable_desc_poll()

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>
*dev—a pointer to an SG-DMA device structure.

Parameters: frequency—the frequency value to set. Only the lower 11-bit value of the
frequency is written to the control register.

Returns: void

Description: | Enables descriptor polling mode with a specific frequency. There is no effect if

the hardware does not support this mode.

alt_avalon_sgdma_disable_desc_poll()

Prototype:

void alt_avalon_sgdma_disable_desc_poll(alt_sgdma_dev *dev)

Thread-safe:

Yes.

Available from
ISR:

Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.

Returns: void

Description: | Disables descriptor polling mode.

alt_avalon_sgd

Prototype:

ma_check_descriptor_status()

int alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descriptor *desc)

Thread-safe:

Yes.

Available from
ISR:

Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously
requested transfer completed normally. Other return codes are defined in
errno.h.

Description: | Checks a descriptor previously owned by hardware for any errors reported in a

previous transfer. The routine reports: errors reported by the SG-DMA
controller, the buffer in use.

alt_avalon_sgd

Prototype:

ma_register_callback()

void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev, alt_avalon_
sgdma_callback callback, alt_ul6 chain_control, void *context)

Scatter-Gather DMA Controller Core

C] Send Feedback

24-23

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-24

alt_avalon_sgdma_start()

Thread-safe:

Yes.

Available from
ISR:

Yes.

Include:

<altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters:

*dev—a pointer to the SG-DMA device structure.
callback—a pointer to the callback routine to execute at interrupt level.
chain_control—the SG-DMA control register contents.

*context—a pointer used to pass context-specific information to the ISR. context
can point to any ISR-specific information.

Returns:

void

Description:

Associates a user-specific routine with the SG-DMA interrupt handler. If a
callback is registered, all non-blocking transfers enables interrupts that causes
the callback to be executed. The callback runs as part of the interrupt service
routine, and care must be taken to follow the guidelines for acceptable interrupt
service routine behavior as described in the Nios II Software Developer’s
Handbook.

To disable callbacks after registering one, call this routine with 0x0 as the
callback argument.

alt_avalon_sgdma_start()

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)
Thread-safe: No.
Available from | Yes.

ISR:

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: | Starts the DMA engine and processes the descriptor pointed to in the controller's

next descriptor pointer and all subsequent descriptors in the chain. It is not
necessary to call this function when do_sync or do_async is used.

alt_avalon_sgdma_stop()

Prototype:

void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe:

No.

Altera Corporation

UG-01085
2016.06.17

Scatter-Gather DMA Controller Core

C] Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

alt_avalon_sgdma_open()

Available from
ISR:

Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: | Stops the DMA engine following completion of the current buffer descriptor. It

is not necessary to call this function when do_sync or do_async is used.

alt_avalon_sgdma_open()

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)
Thread-safe: | Yes.
Available from | No.

ISR:

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, <altera_
avalon_sgdma_regs.h>

Parameters: | name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or
NULL if no corresponding SG-DMA device structure was found.

Description: | Retrieves a pointer to a hardware SG-DMA device structure.

Document Revision History

Table 24-16: Document Revision History

I I S

24-25

Ocotober 2015 |2015.10.30 Updated sections:
+ Register Maps: "Control Register Bit Map" table
+ SG-DMA API: "Function List" table
Added sections:
 alt_avalon_sgdma_enable_desc_poll()
 alt_avalon_sgdma_disable_desc_poll()

July 2014 2014.07.24 Updated Register Maps table, included version register

Scatter-Gather DMA Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

24-26 Document Revision History

UG-01085
2016.06.17

e e | s

December 2010

v10.1.0

Updated figure 19-4 and figure 19-5.
Revised the bit description of 1E_GLOBAL in table 19-7.

Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010

v10.0.0

No change from previous release.

November 2009

v9.1.0

Revised descriptions of register fields and bits.
Added description to the memory-to-stream configurations.

Added descriptions to alt_avalon_sgdma_do_sync_transfer() and alt_
avalon_sgdma_do_async_transfer() API.

Added a list on error signals implementation.

March 2009

v9.0.0

Added description of Enable bursting on descriptor read master.

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size.
Added section DMA Descriptors in Functional Specifications
Revised descriptions of register fields and bits.

Reorganized sections Software Programming Model and Program-
ming with SG-DMA Controller Core.

May 2008

v8.0.0

Added sections on burst transfers.

Altera Corporation

Scatter-Gather DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Scatter-Gather%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Modular Scatter-Gather DMA Core 2 5

2016.06.17

UG-01085 X subscribe C] Send Feedback

Overview

In a processor subsystem, data transfers between two memory spaces can happen frequently. In order to
offload the processor from moving data around a system, a Direct Memory Access (DMA) engine is
introduced to perform this function instead. The Modular Scatter-Gather DMA (mSGDMA) is capable of
performing data movement operations with preloaded instructions, called descriptors. Multiple descrip-
tors with different transfer sizes, and source and destination addresses have the option to trigger
interrupts.

The mSGDMA core has a modular design that facilitates easy integration with the FPGA fabric. The core
consists of a dispatcher block with optional read master and write master blocks. The descriptor block
receives and decodes the descriptor, and dispatches instructions to the read master and write master
blocks for further operation. The block is also configured to transfer additional information to the host. In
this context, the read master block reads data through its Avalon-MM master interface, and channels it
into the Avalon-ST source interface, based on instruction given by the dispatcher block. Conversely, the
write master block receives data from its Avalon-ST sink interface and writes it to the destination address
via its Avalon-MM master interface.

Feature Description

The mSGDMA provides three configuration structures for handling data transfers between the Avalon-
MM to Avalon-MM, Avalon-MM to Avalon-ST, and Avalon-ST to Avalon-MM modes. The sub-core of
the mSGDMA is instantiated automatically according to the structure configured for the mSGDMA use
model.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Modular%20Scatter-Gather%20DMA%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

25-2 Feature Description

UG-01085
2016.06.17

Figure 25-1: mSGDMA Module Configuration with support for Memory-Mapped Reads and Writes

Altera Corporation

MM Read Data—| Read Master SRC
SRC SMK
1
Read Response Read Command
!
SHNK SRC
Descriptors——»| ST Data
Dispatcher
l———CSR———|
SNEK SRC
Write Responsae Wiite Command
¥
SRC SNK
a+—MM Write Data——| Write Master SHK f4————

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Feature Description 25-3

Figure 25-2: mSGDMA Module Configuration with Support for Memory-Mapped Streaming Reads to

the Avalon-ST data bus

——MM Read Data—au

Raad Master

SRC

SRC

SHKE

Read Response

l

Read Command

SMK

Drascrplors >

Haost

-+ CSR |

SRC

Dispatcher

Modular Scatter-Gather DMA Core

C] Send Feedback

ST Data——p

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
25-4 mSGDMA Interfaces and Parameters 2016.06.17

Figure 25-3: mSGDMA Module Configuration with Support for Avalon-ST Data Write Streaming to the
Memory-Mapped Bus

Diascriplors s 5
Hast 1 CSR » S Dispalcher
= Response g
SMK S5RC
&
Wrile Response Write Command
. 4
SRC ShK
+—MM Write Data M Write Master SNK | ST Data

The mSGDMA support 32-bit addressing by default. However, the core can support 64-bit addressing
when you select Extended Feature Options in the parameter editor. It also supports extended features
such as dynamic burst count programming, stride addressing, extended discriptor format (64-bit
addressing), and unique sequence number identification for executed descriptor.

MSGDMA Interfaces and Parameters

Interface
The mSGDMA consists of the following:

+ One Avalon-MM CSR slave port.
« One configurable Avalon-MM Slave or Avalon-ST Source Response port.
» Source and destination data path ports, which can be Avalon-MM or Avalon-ST.

The mSGDMA also provides an active-high-level interrupt output.

Only one clock domain can drive the mSGDMA. The requirement of different clock domains between
source and destination data paths are handled by the Qsys fabric.

A hardware reset resets the whole system. Software reset resets the registers and FIFOs of the dispatchers
of the dispatcher and master modules. For a software reset, read the resetting bit of the status register to
determine when a full reset cycle completes.

Altera Corporation Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Descriptor Slave Port 25-5

Descriptor Slave Port

The descriptor slave port is write only and configurable to either 128 or 256 bits wide. The width is
dependent on the descriptor format you choose for your system. When writing descriptors to this port,
you must set the last bit high so the descriptor can be completely written to the dispatcher module. You
can access the byte lanes of this port in any order, as long as the last bit is written to during the last write
access.

Control and Status Register Slave Port

The control and status register (CSR) port is read/write accessible and is 32-bits wide. When the
dispatcher response port is disabled or set to memory-mapped mode then the CSR port is responsible for
sending interrupts to the host.

Response Port

The response port can be set to disabled, memory-mapped, or streaming. In memory-mapped mode the
response information is communicated to the host via an Avalon-MM slave port. The response informa-
tion is wider than the slave port, so the host must perform two read operations to retrieve all the informa-
tion.

Note: Reading from the last byte of the response slave port performs a destructive read of the response
buffer in the dispatcher module. As a result, always make sure that your software reads from the
last response address last.

When you configure the response port to an Avalon Streaming source interface, connect it to a module
capable of pre-fetching descriptors from memory. The following table shows the ST data bits and their
description.

Table 25-1: Response Source Port Bit Fields

31-0 Actual bytes transferred [31:0]
39-32 Error [7:0]

40 Early termination

41 Transfer complete IRQ mask
49 - 42 Error IRQ mask®

50 Early termination IRQ mask®
51 Descriptor buffer full®?

255 - 52 Reserved

©) Interrupt masks are buffered so that the descriptor pre-fetching block can assert the IRQ signal.
(19 Combinational signal to inform the descriptor pre-fetching block that space is available for another
descriptor to be committed to the dispatcher descriptor FIFO(s).

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-6 Parameters

Parameters

Table 25-2: Component Parameters

UG-01085
2016.06.17

DMA Mode Transfer mode of mSGDMA. This Memory-Mapped to Memory-
parameter determines sub-cores Mapped, Memory-Mapped to
instantiation to construct the mSGDMA Streaming, Streaming to
structure. Memory-Mapped

Data Width Data path width. This parameter affects 8, 16, 32, 64, 128, 256, 512, 1024

both read master and write master data
widths.

Use pre-determined
master address width

Use pre-determined master address width
instead of automatically-determined master
address width.

Enable, Disable

Pre-determined master
address width

Minimum master address width that is
required to address memory slave.

32

Expose mSGDMA read
and write master's
streaming ports

When enabled, mSGDMA read master's
data source port and mSGDMA write
master's data sink port will be exposed for
connection outside mSGDMA core.

Enable, Disable

Data Path FIFO Depth Depth of internal data path FIFO. 16, 32, 64, 128, 256, 512, 1024,
2048, 4096
Descriptor FIFO Depth FIFO size to store descriptor count. 8, 16, 32, 64, 128, 256, 512, 1024

Response Port

Option to enable response port and its port
interface type

Memory-Mapped, Streaming,
Disabled

Maximum Transfer Legth

Maximum transfer length. With shorter
length width being configured, the faster
frequency of mSGDMA can operate in
FPGA.

1KB, 2KB, 4KB, 8KB, 16KB,
32KB, 64KB, 128KB,256KB,
512KB, 1MB, 2MB, 4MB, 8MB,
16MB, 32MB, 64MB, 128 MB,
256MB, 512MB, 1GB, 2GB

Transfer Type Supported transaction type Full Word Accesses Only,
Aligned Accesses, Unaligned
Accesses

Burst Enable Enable burst transfer Enable, Disable

Maximum Burst Count

Maximum burst count

2,4, 8,16, 32, 64, 128, 256, 512,
1024

Force Burst Alignment
Enable

Disable force burst aligment. Force burst
alignment forces the masters to post bursts
of length 1 until the address is aligned to a
burst boundary.

Enable, Disable

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Parameters

25-7

Enable Extended Feature
Support

Enable extended features. In order to use
stride addressing, programmable burst
lengths, 64-bit addressing, or descriptor
tagging the enhanced features support must
be enabled.

Enable, Disable

Stride Addressing Enable

Enable stride addressing. Stride addressing
allows the DMA to read or write data that is
interleaved in memory. Stride addressing
cannot be enabled if the burst transfer
option is enabled.

Enable, Disable

Maximum Stride Words

Maximum stride amount (in words)

1-2G

Programmable Burst
Enable

Enable dynamic burst programming

Enable, Disable

Packet Support Enable

Enable packetized transfer

Note: When PACKET_ENABLE
parameter is disabled and
TRANSFER_TYPE is not "Full
Word Accesses Only", any
unaligned transfer length will cause
additional bytes to be written during
the last transfer beat of the Avalon
streaming data source port of the
read master core. Only with this
parameter set TRUE, actual bytes
transferred is meaningful for the
transaction. PACKET_ENABLE
only applys for ST-to-MM and MM-
to-ST DMA operation mode.

Enable, Disable

Error Enable

Enable error field of ST interface

Enable, Disable

Error Width Error field width 1,2,3,4,5,6,7,8
Channel Enable Enable channel field of ST interface Enable, Disable
Channel Width Channel field width 1,2,3,4,5,6,7,8

Enable Pre-Fetching
module

Enables prefetcher modules, a hardware
core which fetches descriptors from
memory.

Enable, Disable

Enable bursting on
descriptor read master

Enable read burst will turn on the bursting
capabilities of the prefetcher's read
descriptor interface.

Enable, Disable

Data Width of Descriptor
read/write master data
path

Width of the Avalon-MM descriptor read/
write data path.

32,64, 128, 256

Maximum Burst Count
on descriptor read master

Maximum burst count.

Enable, Disable

Modular Scatter-Gather DMA Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-8

mSGDMA Parameter Editor

mSGDMA Parameter Editor
Figure 25-4: Modular Scatter-Gather DMA Parameter Editor

UG-01085
2016.06.17

kZ

Modular Scatter-Gather DMA

altera_msgdma

Documentation

Magalirs
[+ Block Diagram : [* DMA Settings |
[l show signals DMA Mode: |Hemnm-Mapped 1o Memaory-Mapped |v|
Data Width: 32 ,|
msgdma_1
Data Path FIFO Depth; 32 ,|
fgtack . eer i Descriptor FIFQ Depth
Jaratn - - am ’q Response Port: |D|sgn|ed |'i
= e ma writy | Maximum Transfer Length: —
ranster 1ype:) Full Word Accesses Only
—m— ® Aligned Accesses
) Unaligned Accesses
[_] Burst Enable
Maximum Burst Count: |:I_|
[] Farce Burst Alignment Enable
|~ Extended Feature Options
[[] Enable Extended Feature Support
EI Stride Addressing Enabile
Maximum Stride Words:
[] Pragrammatile Burst Enabile
|~ Sueaming Options
] Packet Support Enable
[] Error Enable
Error Width; |
] Channel Enable
Channel Width:
1| il IO E £ I]

MSGDMA Descriptors

The descriptor slave port is 128-bits for standard descriptors and 256-bits for extended descriptors. The
tables below show acceptable standard and extended descriptor formats.

Altera Corporation

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Table 25-3: Standard Descriptor Format

Read and Write Address Fields

25-9

I T S

Offset 3 | 2 | 1 | 0
0x0 Read Address[31:0]

0x4 Write Address[31:0]

0x8 Length([31:0]

0xC Control[31:0]

Table 25-4: Extended Descriptor Format

T e

Offset 3 | 2 | 1 | 0
0x0 Read Address[31:0]
0x4 Write Address[31:0]
0x8 Length([31:0]
0xC Write Burst Read Burst Sequence Number[15:0]
Count[7:0] Count [7:0]
0x10 Write Stride[15:0] Read Stride[15:0]
0x14 Read Address[63:32]
0x18 Write Address[63:32]
0x1C Control[31:0]

All descriptor fields are aligned on byte boundaries and span multiple bytes when necessary. You can
access each byte lane of the descriptor slave port independently of the others, allowing you to populate the
descriptor using any access size.

Note: The location of the control field is dependent on the descriptor format you used. The last bit of the
control field commits the descriptor to the dispatcher buffer when it is asserted. As a result, the
control field is located at the end of a descriptor. This allows you to write the descriptor
sequentially to the dispatcher block.

Read and Write Address Fields

Modular Scatter-Gather DMA Core

The read and write address fields correspond to the source and destination address for each buffer
transfer. Depending on the transfer type, you do not need to provide the read or write address. When
performing memory-mapped to transfers, the write address must not be written as there is no destination
address. There is no destination address since the data is being transfer to a streaming port. Likewise,
when performing streaming to memory-mapped transfers, the read address must not be written as the
data source is a streaming port.

If a read or write address descriptor is written in a configuration that does not require it, the mSGDMA
ignores the unnecessary address. If a standard descriptor is used and an attempt to write a 64-bit address
is made, the upper 32 bits are lost and can cause the hardware to alias a lower address space. 64-bit
addressing requires the use of the extended descriptor format.

Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-10 Length Field 2016.06.17

Length Field

The length field is used to specify the number of bytes to transfer per descriptor. The length field is also
used for streaming to memory-mapped packet transfers. This limits the number of bytes that can be
transferred before the end-of-packet (EOP) arrives. As a result, you must always program the length field.
If you do not wish to limit packet based transfers in the case of Avalon-ST to Avalon-MM transfers,
program the length field with the largest possible value of OxFFFFFFFF. This method allows you to specify
a maximum packet size for each descriptor that has packet support enabled.

Sequence Number Field

The sequence number field is available only when using extended descriptors.The sequence number is an
arbitrary value that you assign to a descriptor, so that you can determine which descriptor is being
operated on by the read and write masters. When performing memory-mapped to memory-mapped
transfers, this value is tracked independently for masters since each can be operating on a different
descriptor. To use this functionality, program the descriptors with unique sequence numbers. Then,
access the dispatcher CSR slave port to determine which descriptor is operated on.

Read and Write Burst Count Fields

The programmable read and write burst counts are only available when using the extended descriptor
format. The programmable burst count is optional and can be disabled in the read and write masters.
Because the programmable burst count is an eight bit field for each master, the maximum that you can
program burst counts of 1 to 128. Programming a value of zero or anything larger than 128 beats will be
converted to the maximum burst count specified for each master automatically.

The maximum programmable burst count is 128 but when you instantiate the DMA, you can have
different selections up to 1024. Refer to the MAX_BURST_COUNT parameter in the parameter table.
You will still have a burst count of 128 if you program for greater than 128. Programing to 0, gets the
maximum burst count selected during instantiation time.

Related Information

Parameters on page 25-6
For more information, refer to the MAX_BURST_COUNT parameter.

Read and Write Stride Fields

The read and write stride fields are optional and only available when using the extended descriptor
format. The stride value determines how the read and write masters increment the address when
accessing memory. The stride value is in terms of words, so the address incrementing is dependent on the
master data width.

When stride is enabled, the master defaults to sequential accesses, which is the equivalent to a stride
distance of one. A stride of zero instructs the master to continuously access the same address. A stride of
two instructs the master to skip every other word in a sequential transfer. You can use this feature to
perform interleaved data accesses, or to perform a frame buffer row and column transpose. The read and
write stride distances are stored independently allowing, you to use different address incrementing for
read and write accesses in memory-to-memory transfers. For example, to perform a 2:1 data decimation
transfer, you would simply configure the read master for a stride distance of two and the write master for
a stride distance of one. To complete the decimation operation you could also insert a filter between the
two masters.

Altera Corporation Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Control Field 25-11

Control Field

The control field is available for both the standard and extended descriptor formats. This field can be
programmed to configure parked descriptors, error handling, and interrupt masks. The interrupt masks
are programmed into the descriptor so that interrupt enables are unique for each transfer.

Table 25-5: Descriptor Control Field Bit Definition

31 Go Commits all the descriptor information into the descriptor
FIFO.

As the host writes different fields in the descriptor, FIFO byte
enables are asserted to transfer the write data to appropriate
byte locations in the FIFO.

However, the data written is not committed until the go bit
has been written.

As a result, ensure that the go bit is the last bit written for each
descriptor.

Writing '1' to the go bit commits the entire descriptor into the
descriptor FIFO(s).

30:25 <reserved>

24 Early done enable Hides the latency between read descriptors.

When the read master is set, it does not wait for pending reads
to return before requesting another descriptor.

Typically this bit is set for all descriptors except the last one.
This bit is most effective for hiding high read latency. For
example, it reads from SDRAM, PCle, and SRIO.

23:16 Transmit Error / Error IRQ | For for Avalon-MM to Avalon-ST transfers, this field is used
Enable to specify a transmit error.

This field is commonly used for transmitting error informa-
tion downstream to streaming components, such as an
Ethernet MAC.

In this mode, these control bits control the error bits on the
streaming output of the read master.

For Avalon-ST to Avalon-MM transfers, this field is used as
an error interrupt mask.

As errors arrive at the write master streaming sink port, they
are held persistently. When the transfer completes, if any error
bits were set at any time during the transfer and the error
interrupt mask bits are set, then the host receives an interrupt.

In this mode, these control bits are used as an error
encountered interrupt enable.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-12

Programming Model

UG-01085
2016.06.17

15

Early Termination IRQ
Enable

Signals an interrupt to the host when a Avalon-ST to Avalon-
MM transfer completes early.

For example, if you set this bit and set the length field to IMB
for Avalon-ST to Avalon-MM transfers, this interrupt asserts
when more than 1MB of data arrives to the write master
without the end of packet being seen.

14

Transfer Complete IRQ
Enable

Signals an interrupt to the host when a transfer completes.

In the case of Avalon-MM to Avalon-ST transfers, this
interrupt is based on the read master completing a transfer.

In the case of Avalon-ST to Avalon-MM or Avalon-MM to
Avalon-MM transfers, this interrupt is based on the write
master completing a transfer.

13

<reserved>

12

End on EOP

End on end of packet allows the write master to continuously
transfer data during Avalon-ST to Avalon-MM transfers
without knowing how much data is arriving ahead of time.

This bit is commonly set for packet-based traffic such as
Ethernet.

11

Park Writes

When set, the dispatcher continues to reissue the same
descriptor to the write master when no other descriptors are
buffered.

10

Park Reads

When set, the dispatcher continues to reissue the same
descriptor to the read master when no other descriptors are
buffered. This is commonly used for video frame buffering.

Generate EOP

Emits an end of packet on last beat of a Avalon-MM to
Avlaon-ST transfer

Generate SOP

Emits a start of packet on the first beat of a Avalon-MM to
Avalon-ST transfer

7:0

Transmit Channel

Emits a channel number during Avalon-MM to Avalon-ST
transfers

Programming Model

Stop DMA Operation

Altera Corporation

The stop DMA operation is also referring to stop dispatcher. Once the “stop DMA” bit is set in the
Control Register, no further new read or write transaction is issued. However, existing transactions
pending completion are allowed to complete. The command buffer in both the read master and write

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Stop Descriptor Operation 25-13

master must be clear before the DMA resumes operation via a reset request. Proceed with the follwing
steps for the stop DMA operation:

1. Set the “stop DMA” bit of the Control Register.
2. Recursively check if “Stopped” bit of Status Register is asserted.

3. When the “Stopped” bit of the Status Register is asserted, reset the DMA by setting the “Reset
Dispatcher” bit of the Control Register.

4. Check if the “Resetting” bit of the Status Register is deasserted. If it is, DMA is now back in normal

operation.

Stop Descriptor Operation

The Stop Descriptor temporary stops the dispatcher core from continuing to issue commands to the read
master and write master. The dispatcher core operates in the sense that it can accept a descriptor sent by
the host up to its descriptor FIFO limit. Proceed with the follwing steps for the stop descriptor operation:

1. Set “Stop Descriptor” bit of Control Register.

2. Check if “Stopped” bit of Status Register is asserted.

To resume DMA from its previously stop descriptor operation, do the following:

1. Unset the “Stop Descriptor” bit of Control Register.
2. Check if “Stopped” bit of Status Register is deasserted.

Recovery from Stopped on Error and Stopped on Early Termination

When stopped on error or stopped on early termination occurs, nSGDMA requires a software reset to
continue operation.

1. When the “Stopped” bit of the Status register is asserted, reset the DMA by setting the “Reset
Dispatcher” bit of Control register.

2. Check if the “Resetting” bit of Status register is deasserted. If it is, DMA is now back in normal

operation.

Register Map of mSGDMA

The following table illustrates the Altera mSGDMA register map under observation by host processor
from its Avalon-MM CSR interfaces.

Table 25-6: CSR Registers Map

Offset Attribute 3 ‘ 2 ‘ 1 ‘ 0

0x0 Read/Clear | Status

0x4 Read/Write | Control

0x8 Read Write Fill Level[15:0] Read Fill Level[15:0]
0xC Read <reserved>(" Response Fill Level[15:0]

(1) 'Writing to reserved bits will have no impact on the hardware, reading will return unknown data.

Modular Scatter-Gather DMA Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Byte Lanes

25-14 Status Register

0x10 Read Write Sequence Read Sequence Number[15:0]?
Number[15:0]1?
0x14 N/A <reserved>!
0x18 N/A <reserved>!
0x1C N/A <reserved>!
Status Register

Table 25-7: Status Register Bit Definition

T

31:10 |<reserved> N/A
9 IRQ Set when an interrupt condition occurs.
8 Stopped on Early | When the dispatcher is programmed to stop on early termination, this bit is
Termination set. Also set, when the write master is performing a packet transfer and does
not receive EOP before the pre- determined amount of bytes are transferred,
which is set in the descriptor length field. If you do not wish to use early
termination you should set the transfer length of the descriptor to
OxFFFFFFFF ,which gives you the maximum packet based transfer possible
(early termination is always enabled for packet transfers).
7 Stopped on Error | When the dispatcher is programmed to stop errors and when an error beat
enters the write master the bit is set.
6 Resetting Set when you write to the software reset register and the SGDMA is in the
middle of a reset cycle. This reset cycle is necessary to make sure there are no
incoming transfers on the fabric. When this bit de-asserts you may start using
the SGDMA again.
5 Stopped Set when you either manually stop the SGDMA, or you setup the dispatcher to
stop on errors or early termination and one of those conditions occurred. If
you manually stop the SGDMA this bit is asserted after the master completes
any read or write operations that were already in progress.
4 Response Buffer Set when the response bulffer is full.
Full

3 Response Buffer Set when the response buffer is empty.
Empty

2 Descriptor Buffer | Set when either the read or write command buffers are full.
Full

1 Descriptor Buffer | Set when both the read and write command buffers are empty.
Empty

0 Busy Set when the dispatcher still has commands buffered, or one of the masters is
still transferring data.

(1) Sequence numbers will only be present when dispatcher enhanced features are enabled.

Altera Corporation

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Control Register

Control Register

Table 25-8: Control Register Bit Definition

T T

31:10

<reserved>

N/A

5

Stop Descriptors

Setting this bit stops the SGDMA dispatcher from issuing more descriptors to
the read or write masters. Read the stopped status register to determine when

the dispatcher stopped issuing commands and the read and write masters are
idle.

Global Interrupt
Enable Mask

Setting this bit allows interrupts to propagate to the interrupt sender port. This
mask occurs after the register logic so that interrupts are not missed when the
mask is disabled.

Stop on Early
Termination

Setting this bit stops the SGDMA from issuing more read/write commands to
the master modules if the write master attempts to write more data than the
user specifies in the length field for packet transactions. The length field is used
to limit how much data can be sent and is always enabled for packet based
writes.

Stop on Error

Setting this bit stops the SGDMA from issuing more read/write commands to
the master modules if an error enters the write master module sink port.

Reset Dispatcher

Setting this bit resets the registers and FIFOs of the dispatcher and master
modules. Since resets can take multiple clock cycles to complete due to
transfers being in flight on the fabric, you should read the resetting status
register to determine when a full reset cycle has completed.

Stop Dispatcher

Setting this bit stops the SGDMA in the middle of a transaction. If a read or
write operation is occurring, then the access is allowed to complete. Read the
stopped status register to determine when the SGDMA has stopped. After
reset, the dispatcher core defaults to a start mode of operation.

25-15

The response slave port of mSGDMA contains registers providing information of the executed transac-
tion. This register map is only applicable when the response mode is enabled and set to memory mapped.
Also when the response port is enabled, it needs to have responses read because it buffers responses.
When setup as a memory-mapped slave port, reading byte offset 0x7 outputs the response. If the response
FIFO becomes full the dispatcher stops issuing transfer commands to the read and write masters. The
following describes the registers definition.

Table 25-9: Response Registers Map

“__—“
Read Actual Bytes Transferred[31:0]
0x4 Read <reserved>1? | <reserved> Early Error[7:0]
Termin)ation(14

(1) Reading from byte 7 outputs the response FIFO.
(14 Early Termination is a single bit located at bit 8 of offset 0x4.

Modular Scatter-Gather DMA Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-16 Control Register 2016.06.17

The following list explains each of the fields:

Altera Corporation

Actual bytes transferred determines how many bytes transferred when the mSGDMA is configured in
Avalon-ST to Avlaon-MM mode with packet support enabled. Since packet transfers are terminated by
the IP providing the data, this field counts the number of bytes between the start-of-packet (SOP) and
end-of-packet (EOP) received by the write master. If the early termination bit of the response is set,
then the actual bytes transferred is an underestimate if the transfer is unaligned.

Error Determines if any errors were issued when the mSGDMA is configured in Avalon-ST to Avlaon-
MM mode with error support enabled. Each error bit is persistent so that errors can accumulate
throughout the transfer.

Early Termination determines if a transfer terminates because the transfer length is exceeded when
the SGDMA is configured in Avalon-ST to Avalon-MM mode with packet support enabled. This bit is
set when the number of bytes transferred exceeds the transfer length set in the descriptor before the
end-of-packet is received by the write master.

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Modular Scatter-Gather DMA Prefetcher Core 25-17

Modular Scatter-Gather DMA Prefetcher Core

The mSGDMA Prefetcher core is an additional micro core to the existing mSGDMA core. The Prefetcher
core provides extra functionality through the Avalon-MM and dispatcher core. The Avalon-MM fetches a
series of descriptors from memory that describes the required data transfers before passing them to
dispatcher core for data transfer execution. The series of descriptors in memory can be linked together to
form a descriptor list. This allows the DMA core to execute multiple descriptors in single run, thus
enabling transfer to a non-contiguous memory space and improves system performance.

Feature Description

Supported Features

o Descriptor linked list

 Data transfer to non-contiguous memory space
o Descriptor write back

» Hardware descriptor polling

o 64-bit address spaces

Functional Description

Architecture Overview
The Prefetcher core supports all the three existing Modular SGDMA configurations:

« Memory-Mapped to Memory-Mapped
o Memory-Mapped to Streaming
« Streaming to Memory-Mapped

On interfaces facing host and external peripherals, it has dedicated Avalon-MM read and write master
interfaces to fetch series of descriptors from memory as well as performing a descriptor write back. It has
one Avalon Memory-Mapped CSR slave interface for the host processor to access the configuration
register in the Prefetcher core.

On interfaces facing the internal dispatcher core, it has an Avalon-MM descriptor write master interface
to write a descriptor to the dispatcher core. It has Avalon-ST response sink interface to receive response
information from the dispatcher core upon completion of each descriptor execution.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-18

Architecture Overview

UG-01085
2016.06.17

Figure 25-5: Memory-Mapped to Memory-Mapped Configuration with Prefetcher Enabled

Host

CSR

—— MM Read Data —p|

4—— CSR —P|

Altera Corporation

MM Read
Descriptors

MM Write
Descriptors

<«

4+—IRQ

Prefetcher

Descriptors —p

SNK |4——Response

4— MM Write Data

ST Data

M Read Master SRC
SRC SNK
Read Rejponse Read Command
SNK SRC
Z‘
SNK Dispatcher
SRC
SNK SRC
Write Re‘sponse Write Command
SRC SNK
Write Master SNK

]

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Architecture Overview 25-19

Figure 25-6: Memory-Mapped to Streaming Configuration with Prefetcher Enabled

—— MM Read Data —p M

Host

[¢——— CSR —P|

MM Read

Descriptors »

MM Write
- Descriptors

+“—IRQ

Modular Scatter-Gather DMA Core

C] Send Feedback

CSR

z‘
]

Prefetcher
I‘

SRC
SNK

Read Master

SRC

——ST Data —»

SRC SNK

Read Response Read Command

{¢— Response

v

-]

Descriptors —m| SNK

SNK SRC

Dispatcher

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
25-20 Descriptor Format 2016.06.17

Figure 25-7: Streaming to Memory-Mapped Configuration with Prefetcher Enabled

CSR

A

Host

[¢——— CSR —»|

Z|
MM Read
Descriptors M
Prefetcher
]

v
M

Descriptors —»| SNK Dispatcher

SRC
SNK |4——Response

MM Write
47Des|:riptors] SRC
SNK SRC
4+—IRQ ‘
Write Response Write C(lmmand
SRC SNK

4— MM Write Data

M Write Master SNK [#——ST Data

Descriptor Format

The mSGDMA without the Prefetcher core defines two types of descriptor formats. Standard descriptor
format which consists of 128 bits and extended descriptor format which consists of 256 bits. With the
Prefetcher core enabled, the existing descriptor format is expanded to 256 bits and 512 bits respectively in
order to accommodate additional control information for the prefetcher operation.

Table 25-10: Standard Descriptor Format when Prefetcher is Enabled

Byte Lanes
Offset 3 2 1 0
0x0 Read Address [31-0]
0x4 Write Address [31-0]
0x8 Length [31-0]
0xC Next Desc Ptr [31-0]
0x10 Actual Bytes Trasferred [31-0]
0x14 Reserved [15-0] Status [15-0]
0x18 Reserved [31-0]
Altera Corporation Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Descriptor Fields Definition 25-21
0x1C Control [31, 30, 29..0]
Table 25-11: Extended Descriptor Format when Prefetcher is Enabled
Byte Lanes
Offset 3 2 1 0
0x0 Read Address [31-0]
0x4 Write Address [31-0]
0x8 Length [31-0]
0xC Next Desc Ptr [31-0]
0x10 Actual Bytes Trasferred [31-0]
0x14 Reserved [15-0] Status [15-0]
0x18 Reserved [31-0]
0x1C Write Burst Count | Read Burst Count Sequence Number [15-0]
(7-0] [7-0]
0x20 Write Stride [15-0] Read Stride [15-0]
0x24 Read Address [63-32]
0x28 Write Address [63-32]
0x2C Next Desc Ptr [63-32]
0x30 Reserved [31-0]
0x34 Reserved [31-0]
0x38 Reserved [31-0]
0x3C Control [31, 30, 29..0]

Descriptor Fields Definition

Next Descriptor Pointer

The next descriptor pointer field specifies the address of the next descriptor in the linked list.

Actual Bytes Transferred

Specifies the actual number of bytes that has been transferred. This field is not applicable if Modular
SGDMA is configured as Memory-Mapped to Streaming transfer.

Table 25-12: Status

I T T

15:9 ‘ Reserved ‘ Reserved fields

Modular Scatter-Gather DMA Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

I R T

8 Early Termination

25-22 Descriptor Processing

Indicates early termination condition where write master is
performing a packet transfer and does not receive EOP before pre-
determined amount of bytes are transferred. This status bit is
similar to status register bit 8 of the dispatcher core. For more
details refer to dispatcher core CSR definition.

This field is not applicable if Modular SGDMA is configured as
Memory-Mapped to Streaming transfer.

7:0 Error Indicates an error has arrived at the write master streaming sink

port.

This field is not applicable if Modular SGDMA is configured as
Memory-Mapped to Streaming transfer.

Table 25-13: Control

I T T

30 Owned by Hardware This field determines whether hardware or software has write

access to the current descriptor.

When this field is set to 1, the Modular SGDMA can update the
descriptor and software should not access the descriptor due to the
possibility of race conditions. Otherwise, it is safe for software to
update the descriptor.

For bit 31 and 29:0, refer to descriptor control field bit 31 and 29:0 defined in dispatcher core. Table 25-5

Descriptor Processing

The DMA descriptors specify data transfers to be performed. With the Prefetcher core, a descriptor is
stored in memory and accessed by the Prefetcher core through its descriptor write and descriptor read
Avalon-MM master. The mSGDMA has an internal FIFO to store descriptors read from memory. This
FIFO is located in the dispatcher’s core. The descriptors must be initialized and aligned on a descriptor
read/write data width boundary. The Prefetcher core relies on a cleared Owned By Hardware bit to stop
processing. When the Owedn by Hardware bit is 1, the Prefetcher core goes ahead to process the
descriptor. When the Owned by Hardware bit is 0, the Prefetcher core does not process the current
descriptor and assumes the linked list has ended or the next descriptor linked list is not yet ready.

Each time a descriptor has been processed, the core updates the Actual Byte Transferred, Status and
Control fields of the descriptor in memory (descriptor write back). The Owned by Hardware bit in the
descriptor control field is cleared by the core during descriptor write back. Refer to software program-
ming model section to know more about recommended way to set up the Prefetcher core, building and
updating the descriptor list.

In order for the Prefetcher to know which memory addresses to perform descriptor write back, the next
descriptor pointer information will need to be buffered in Prefetcher core. This buffer depth will be
similar to descriptor FIFO depth in dispatcher core. This information is taken out from buffer each time a
response is received from dispatcher.

Registers

Altera Corporation Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Register Map 25-23

Register Map

Table 25-14: Register Map

Control 0x0 Specifies the Prefetcher core behavior such
as when to start the core.

Next Descriptor Pointer 0x1 Contains the address [31:0] of the next
Low descriptor to process. Software sets this
register to the address of the first descriptor
as part of the system initialization sequence.

If descriptor polling is enabled, this register
is also updated by hardware to store the
latest next descriptor address. The latest
next descriptor address is used by the
Prefetcher core to perform descriptor
polling.

N?Xt Descriptor Pointer 0x2 Contains the address [63:32] of the next
High descriptor to process. Software set this
register to the address of the first descriptor
as part of the system initialization sequence.
This field is used only when higher than 32-
bit addressing is used when mSGDMA’s
extended feature is enabled.

If descriptor polling is enabled, this register
is also updated by hardware to store the
latest next descriptor address. The latest
next descriptor address is used by the
Prefetcher core to perform descriptor
polling.

Descriptor Polling 0x3 Descriptor Polling Frequency
Frequency

Status 0x4 Status Register

Control Register

The address offset for the Control Register table is 0x0.

Table 25-15: Control Register

| Reserved | | 0x0 | Reserved fields

Modular Scatter-Gather DMA Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-24 Control Register

UG-01085
2016.06.17

Park Mode

RW |

ThlS bit enables the mSGDMA to
repeatedly execute the same linked
list over and over again. In order for
this to work, software need to setup
the last descriptor to point back to
the first descriptor.

1: Park mode is enabled. Pefetcher
will not clear the owned by
hardware field during descriptor
write back

0: Park mode is disabled. Prefetcher
will clear the owned by hardware
field during descriptor write back.

Software can terminate the park
mode operation by clearing this
field. Since this field is in CSR and
not in descriptor field itself, this
termination event is asynchronous
to current descriptor in progress
(user can’t deterministically choose
which descriptor in the linked list to

stop).

Park mode feature is not intended
to be used on the fly. User must not
enable this bit when the Prefetcher
is already in operation. This bit
shall be set during initialization/
configuration phase of the control
register.

Altera Corporation

Global Interrupt Enable
Mask

R/W

0x0

Setting this bit will allow interrupts
to propagate to the interrupt sender
port. This mask occurs after the
register logic so that interrupts are
not missed when the mask is
disabled.

Note: There is an equivalent
global interrupt enable
mask bit in dispatcher
core CSR. When the
Prefetcher is enabled,
software shall use this
bit. When the Prefetcher
is disabled, software shall
use equivalent global
interrupt enable mask bit
in dispatcher core CSR.

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Control Register 25-25

Reset Prefetcher

R/WIS® [0x0 |

Thls bit is used when software
intends to stop the Prefetcher core
when it is in the middle of data
transfer. When this bit is 1, the
Prefetcher core begin its reset

sequence.

This bit is automatically cleared by
hardware when the reset sequence
has completed. Therefore, software
need to poll for this bit to be cleared
by hardware to ensure the reset

sequence has finished.

This function is intended to be used
along with reset dispatcher function
in dispatcher core. Once the reset
sequence in the Prefetcher core has
completed, software is expected to
reset the dispatcher core, polls for
dispatcher’s reset sequence to be
completed by reading dispatcher

core status register.

Modular Scatter-Gather DMA Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-26 Control Register

UG-01085
2016.06.17

Altera Corporation

Desc_Poll_En

R/W

Descriptor polling enable bit.

1: When the last descriptor in
current linked list has been
processed, the Prefetcher core polls
the Owned By Hardware bit of next
descriptor to be set and automati-
cally resumes data transfer without
the need for software to set the Run
bit. The polling frequency is
specified in Desc_Poll_Freq
register.

0: When the last descriptor in
current linked list has been
processed, the Prefetcher stops
operation and clears the run bit. In
order to restart the DMA engine,
software need to set the Run bit
back to 1.

In case software intends to disable
polling operation in the middle of
transfer, software can write this
field to 0. In this case, the whole
mSGDMA operation is stopped
when the Prefetcher core encounter
owned by hardware bit = 0

Note: This bit should be set
during initialization or
configuration of the
control register.

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

R [R/WIS | Software sets this bit to 1 to start the
descriptor fetching operation which
subsequently initiates the DMA
transaction.

Descriptor Polling Frequency 25-27

When descriptor polling is disabled,
this bit is automatically cleared by
hardware when the last descriptor
in the descriptor list has been
processed or when the Prefetcher
core read owned by hardware bit =
0.

When descriptor polling is enabled,
mSGDMA operation is continu-
ously run. Thus the run bit stays 1.

This field is also cleared by
hardware when reset sequence
process triggered by Reset_
Prefetcher bit completes.

Descriptor Polling Frequency

Table 25-16: Desc_Poll_Freq

31:16 Reserved Reserved fields
15:0 Poll_Freq R/W 0x0 Specifies the frequency of
descriptor polling

operation. The polling
frequency is in term of
number of clock cycles.
The poll period is counted
from the point where read
data is received by the
Prefetcher core.

Status

Table 25-17: Status

‘ Reserved ‘ ‘ 0x0 ‘ Reserved fields

(15 'W1S register attribute means, software can write 1 to set the field. Software write 0 to this field has no effect.

Modular Scatter-Gather DMA Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-28 Interfaces

UG-01085
2016.06.17

RQ |R/WICW®

Set by hardware when an
interrupt condition
occurs. Software must
perform a write 1 to this
field in order to clear it.

There is an equivalent
IRQ status bit in the
dispatcher core CSR.
When the Prefetcher is
enabled, software uses
this bit as an IRQ status
indication. When the
Prefetcher is disabled,
software uses equivalent
IRQ status bit in
dispatcher core CSR.

Interfaces

Avalon-MM Read Descriptor

This interface is used to fetch descriptors in memory. It supports non-burst or burst mode which configu-
rable during generation time.

Table 25-18: Avalon-MM Read Descriptor

Address 32 to 64-bit Avalon-MM read address.
32-bits if extended feture is disabled.
32- to 64-bits if extended feature is enabled.
Read 1 Avalon-MM read control
Read data 32, 64, 128, 256, 512 Avalon-MM read data bus. Data width is
configurable during IP generation.
Wait request 1 Avalon-MM wait request for backpressure
control.
Read data valid 1 Avalon-MM read data valid indication.

(10 W1C register attribute means, software write 1 to clear the field. Software write 0 to this field has no effect.

Altera Corporation

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Avalon-MM Write Descriptor 25-29

Burstcount 1/2/3/4/5

Avalon-MM burst count. The maximum
burst count is configurable during IP
generation.

This signal role is applicable only when the
Enable Bursting on the descriptor read
master is turned on.

Avalon-MM Write Descriptor

This interface is used to access the Prefetcher CSR registers. It has fixed write and read wait time of 0

cycles and read latency of 1 cycle.

Table 25-19: Avalon-MM Write Descriptor

Address 32to 64 Avalon-MM write address

Write 1 Avalon-MM read control

Wait request 1 Avalon-MM waitrequest for backpressure
control

Write data 32, 64, 128, 256, 512 Avalon-MM write data bus

Byte enable 4,8,16, 32,64 Avalon-MM write byte enable control. Its
width is automatically derived from selected
data width

Avalon-MM CSR

This interface is used to access the Prefetcher CSR registers. It has fixed write and read wait time of 0

cycles and read latency of 1 cycle.

Table 25-20: Avalon-MM CSR

Address 3 Avalon-MM write address
Write 1 Avalon-MM read control
Read 1 Avalon-MM write control
Write data 32 Avalon-MM write data bus
Read data 32 Avalon-MM read data bus

Avalon-ST Descriptor Source

This interface is used by the Prefetcher to write descriptor information into the dispatcher core.

Modular Scatter-Gather DMA Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-30 Avalon-ST Response 2016.06.17

Table 25-21: Avalon-ST Descriptor Source

Valid 1 Avalon-ST valid control

Ready 1 Avalon-ST ready control with ready latency
of 0. Refer to dispatcher's descriptor format
for wrtie data definition.

Data 128/256 Avalon-ST data bus

Avalon-ST Response

This interface is used by the Prefetcher core to retrieve response information from dispatcher’s core upon
each transfer completion.

Table 25-22: Avalon-ST Response

Valid 1 Avalon-ST valid control.

Prefetcher core expects valid signal to
remain high while the bus is being back
pressured.

Ready 1 Avalon-ST ready control. Used by the
Prefetcher core to back pressure the
external ST response source.

Data 256 Avalon-ST data bus. Refer to dispatcher’s
response source format for ST data
definition.

Prefetcher core expects data signals to
remain constant while the bus is being back
pressured.

Streaming interface (ST) data bus format and definition are similar to the dispatcher’s response source
format:

Table 25-23: Avalon-ST Response Data Format and Definition

[31:0] Acutal bytes transferred [31:0]
[39:32] Error [7:0]
40 Early termination
41 Transfer complete IRQ mask
[49:42] Error IRQ mask
50 Early termination IRQ mask
51 Descriptor buffer full
Altera Corporation Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

IRQ Interface 25-31

[255:52] Reserved

IRQ Interface

When the Prefetcher is enabled, IRQ generation no longer outputs from the dispatcher’s core. It will be
outputted from the Prefetcher core. The sources of the interrupt remain the same which are transfer
completion, early termination, and error detection. Masking bits for each of the interrupt sources are
programmed in the descriptor. This information will be passed to the Prefetcher core through the ST
response interface. An equivalent global interrupt enable mask and IRQ status bit which are defined in
dispatcher core are now defined in the Prefetcher core as well. These two bits need to be defined in the
Prefetcher core since the actual IRQ register is now located in the Prefetcher core.

Software Programming Model

Setting up Descriptor and mSGDMA Configuration Flow

The following is the recommended software flow to setup the descriptor and configuring the mSGDMA.

1.

2,

Build the descriptor list and terminate the list with a non-hardware owned descriptor (Owned By
Hardware = 0).

Configure mSGDMA by accessing dispatcher core control register (for example: to configure Stop on
Error, Stop on Early Termination, etc...)

Configure mSGDMA by accessing the Prefetcher core configuration register (for example: to write the
address of the first descriptor in the first list to the next descriptor pointer register and set the Run bit
to 1 to initiate transfers).

While the core is processing the first list, your software may build a second list of descriptors.

An IRQ can be generated each time a descriptor transfer is completed (depends whether transfer
complete IRQ mask is set for that particular descriptor). If you only need an IRQ to be generated when
mSGDMA finishes processing the first list, you only need to set transfer complete IRQ mask for the
last descriptor in the first list.

When the last descriptor in the first linked list has been processed, an IRQ will be generated if the
descriptor polling is disabled. Following this, your software needs to update the next descriptor pointer
register with the address of the first descriptor in the second linked list before setting the run bit back
to 1 to resume transfers. If descriptor polling is enabled, software does not need to update the next
descriptor pointer register (for second descriptor linked list onwards) and set the run bit back to 1.
These 2 steps are automatically done by hardware. The address of the new list is indicated by next
descriptor pointer fields of the previous list. The Prefetcher core polls for the Owned by Hardware bit
to be 1 in order to resume transfers. Software only needs to flip the Owned by Hardware bit of the first
descriptor in second linked list to 1 to indicate to the Prefetcher core that the second linked list is
ready.

If there are new descriptors to add, always add them to the list which the core is not processing
(indicated by Owned By Hardware = 0). For example, if the core is processing the first list, add new
descriptors to the second list and so forth. This method ensures that the descriptors are not updated
when the core is processing them. Your software can read the descriptor in the memory to know the
status of the transfer (for example; to know the actual bytes being transferred, any error in the
transfer).

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-32

Resetting Prefetcher Core Flow

Resetting Prefetcher Core Flow

UG-01085
2016.06.17

The following is the recommended flow for software to stop the mSGDMA when it is in the middle of

operation.

1. Write 1 to the Prefetcher control register bit 2 (Reset_Prefetcher bit set to 1).

2. Poll for control register bit 2 to be 0 (Reset_Prefetcher bit cleared by hardware).

3. Trigger software reset condition in the dispatcher core.

4. Poll for software reset condition in the dispatcher core to be completed by reading the dispatcher core

status register.

5. The whole reset flow has completed, software can reconfigure the mSGDMA.

Parameters

Table 25-24: Prefetcher Parameters

Enable Pre-fetching lor0 1: Pre-fetching is enabled
Module
0: Pre-fetching is disabled
Enable bursting on lor0 1: Pre-fetching module uses Avalon-MM

descriptor read master

bursting when fetching descriptors.

Data Width (Avalon-MM
Read/Write Descriptor)

32, 64, 128, 256, 512

Specifies the read and write data width of
Avalon-MM read and write descriptor
master.

Maximum Burst Count 1,2,4,8,16 Specifies the maximum read burst count of
(Avalon-MM Read Avalon-MM read descriptor master.
Descriptor)

Enable Extended Feature | 1or0 This is a derived parameter from the

Support

mSGDMA top level composed. This is
needed by this core to determine descriptor
length (different length for standard/
extended descriptor).

FIFO Depth

8, 16, 32, 64, 128, 256, 512,
1024

This is a derived parameter from the
mSGDMA top level composed. This is
needed by this core to determine its buffer
depth to store next descriptor pointer
information for descriptor write back.

Altera Corporation

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

;J(?1-(6).1006£.;15 7 Driver Implementation 25-33
Driver Implementation

Following section contains the APIs for the mSGDMA HAL Driver. An open mSGDMA API will
instantiate an mSGDMA device with optional register interrupt service routine (ISR). You must define
your own specific handling mechanism in the callback function when using an ISR. A callback function
will be called by the ISR on error, early termination, and on transfer complete.

alt_msgdma_standard_descriptor_async_transfer
Table 25-25: alt_msgdma_standard_descriptor_async_transfer

Prototype: int alt_msgdma_standard_descriptor_async_transfer(alt_msgdma_dev *dev, alt_
msgdma_standard_descriptor *desc)

Include: <modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to msgdma instance.

*desc — a pointer to a standard descriptor structure

Returns: “0” for success, -ENOSPC indicates FIFO buffer is full, -EPERM indicates
operation not permitted due to descriptor type conflict, -ETIME indicates Time out
and skipping the looping after 5 msec.

Description: A descriptor needs to be constructed and passing as a parameter pointer to *desc

when calling this function. This function will call the helper function “alt_msgdma_
descriptor_async_transfer” to start a non-blocking transfer of one standard
descriptor at a time. If the FIFO buffer for a read/write is full at the time of this call,
the routine will immediately return ~-ENOSPC, the application can then decide how
to proceed without being blocked. -ETIME will be returned if the time spending for
writing the descriptor to the dispatcher takes longer than 5 msec. You are advised to
refer to the helper function for details. If a callback routine has been previously
registered with this particular mSGDMA controller, the transfer will be set up to
enable interrupt generation.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-34 alt_msgdma_extended_descriptor_async_transfer

UG-01085
2016.06.17

alt_msgdma_extended_descriptor_async_transfer

Table 25-26: alt_msgdma_extended_descriptor_async_transfer

Prototype: int alt_msgdma_extended_descriptor_async_transfer(alt_msgdma_dev *dev, alt_
msgdma_extended_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.
*desc — a pointer to an extended descriptor structure

Returns: “0” for success, ~-ENOSPC indicates FIFO buffer is full, -EPERM indicates
operation not permitted due to descriptor type conflict, -ETIME indicates time out
and skipping the looping after 5 msec.

Description: A descriptor needs to be constructed and passing as a parameter pointer to the

*desc when calling this function. This function will call the helper function “alt_
msgdma_descriptor_async_transfer” to start a non-blocking transfer of one
standard descriptor at a time. If the FIFO buffer for a read/write is full at the time of
this call, the routine will immediately return ~-ENOSPC, the application can then
decide how to proceed without being blocked.-ETIME will be returned if the time
spending for writing descriptor to the dispatcher takes longer than 5 msec. You are
advised to refer the helper function for details. If a callback routine has been
previously registered with this particular mSGDMA controller, the transfer will be
set up to enable interrupt generation.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_descriptor_async_transfer 25-35

alt_msgdma_descriptor_async_transfer
Table 25-27: alt_msgdma_descriptor_async_transfer
Prototype: static int alt_msgdma_descriptor_async_transfer(alt_msgdma_dev *dev, alt_

msgdma_standard_descriptor *standard_desc, alt_msgdma_extended_descriptor
*extended_desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.

*standard_desc — Pointer to single standard descriptor.

*extended_desc — Pointer to single extended descriptor.

Returns: “0” for success, -ENOSPC indicates FIFO buffer is full, -EPERM indicates
operation not permitted due to descriptor type conflict, -ETIME indicates Time out
and skipping the looping after 5 msec.

Description: Helper functions for both “alt_msgdma_standard_descriptor_async_transfer” and
“alt_msgdma_extended_descriptor_async_transfer”.

Note: Either one of both *standard_desc and *extended_desc must be assigned
with NULL, another with proper pointer value. Failing to do so can cause
the function return with "-EPERM ".

If a callback routine has been previously registered with this particular mnSGDMA
controller, the transfer will be set up to enable interrupt generation. It is the
responsibility of the application developer to check source interruption, status
completion and creating suitable interrupt handling.

Note: "stop on error” of the CSR control register is always masking within this
function. The CSR control can be set by user through calling "alt_
register_callback" with user defined control setting.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
25-36 alt_msgdma_standard_descriptor_sync_transfer 2016.06.17

alt_msgdma_standard_descriptor_sync_transfer
Table 25-28: alt_msgdma_standard_descriptor_sync_transfer

Prototype: int alt_msgdma_standard_descriptor_sync_transfer(alt_msgdma_dev *dev, alt_
msgdma_standard_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to mSGDMA instance.

*desc — a pointer to a standard descriptor structure

Returns: “0” for success, “error” indicates errors or conditions causing msgdma stop issuing
commands to masters, suggest checking the bit set in the error with CSR status
register.”-EPERM” indicates operation not permitted due to descriptor type
conflict. “-ETIME” indicates Time out and skipping the looping after 5 msec.

Description: A standard descriptor needs to be constructed and passing as a parameter pointer to
*desc when calling this function. This function will call helper function “alt_
msgdma_descriptor_sync_transfer” to start a blocking transfer of one standard
descriptor at a time. If the FIFO bufter for a read or write is full at the time of this
call, the routine will wait until a free FIFO buftfer is available to continue processing
or a 5 msec time out. The function will return “error” if errors or conditions causing
the dispatcher to stop issuing the commands to both the read and write masters
before both the read and write command buffers are empty. It is the responsibility
of the application developer to check errors and completion status.

Altera Corporation Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_extended_descriptor_sync_transfer 25-37

alt_msgdma_extended_descriptor_sync_transfer
Table 25-29: alt_msgdma_extended_descriptor_sync_transfer

Prototype: int alt_msgdma_extended_descriptor_sync_transfer(alt_msgdma_dev *dev, alt_
msgdma_extended_descriptor *desc)

Include: < modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters: *dev — a pointer to msgdma instance.

*desc — a pointer to an extended descriptor structure

Returns: “0” for success, “error” indicates errors or conditions causing msgdma stop issuing

commands to masters, suggest checking the bit set in the error with CSR status
register.”-EPERM” indicates operation not permitted due to descriptor type
conflict. “-ETIME” indicates Time out and skipping the looping after 5 msec.

Description: An extended descriptor needs to be constructed and passing as a parameter pointer

to *desc when calling this function. This function will call helper function “alt_
msgdma_descriptor_sync_transfer” to startcommencing a blocking transfer of one
extended descriptor at a time. If the FIFO buffer for one of read or write is full at the
time of this call, the routine will wait until free FIFO buffer available for continue
processing or 5 msec time out. The function will return “error” if errors or
conditions causing the dispatcher stop issuing the commands to both read and
write masters before both read and write command buffers are empty. It is the
responsibility of the application developer to check errors and completion status. -
ETIME will be returned if the time spending for waiting the FIFO bulffer, writing
descriptor to the dispatcher and any pending transfer to complete take longer than
Smsec.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-38 alt_msgdma_descriptor_sync_transfer 2016.06.17

alt_msgdma_descriptor_sync_transfer

Table 25-30: alt_msgdma_descriptor_sync_transfer

Prototype:

int alt_msgdma_descriptor_sync_transfer(alt_msgdma_dev *dev, alt_msgdma_
standard_descriptor *standard_desc, alt_msgdma_extended_descriptor *extended_
desc)

Include:

< modular_sgdma_dispatcher.h >, < altera_msgdma_csr_regs.h>, <altera_
msgdma_descriptor_regs.h>, <sys/alt_errno.h>, <sys/alt_irq.h>, <io.h>

Parameters:

*dev — a pointer to msgdma instance.
*standard_desc — Pointer to single standard descriptor.

*extended_desc — Pointer to single extended descriptor.

Returns:

“0” for success, “error” indicates errors or conditions causing msgdma stop issuing
commands to masters, suggest checking the bit set in the error with CSR status
register.”-EPERM” indicates operation not permitted due to descriptor type
conflict. “-ETIME” indicates Time out and skipping the looping after 5 msec.

Description:

Helper functions for both “alt_msgdma_standard_descriptor_sync_transfer” and
“alt_msgdma_extended_descriptor_sync_transfer”.

Note: Either one of both *standard_desc and *extended_desc must be assigned
with NULL, another with proper pointer value. Failing to do so can cause
the function return with "-EPERM .

Note: "stop on error" of CSR control register is always being masked and the
interrupt is always disabled within this function. The CSR control can be
set by user through calling "alt_register_callback" with user defined
control setting.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_construct_standard_st_to_mm_descriptor 25-39

alt_msgdma_construct_standard_st_to_mm_descriptor
Table 25-31: alt_msgdma_construct_standard_st_to_mm_descriptor
Prototype: int alt_msgdma_construct_standard_st_to_mm_descriptor (alt_msgdma_dev *dev,

alt_msgdma_standard_descriptor *descriptor, alt_u32 *write_address, alt_u32
length, alt_u32 control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.

*descriptor - a pointer to a standard descriptor structure.

*write_address — a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXffffffft”.

control - control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_standard_descriptor” for
constructing st_to_mm standard descriptors. Unnecessary elements are set to 0 for
completeness and will be ignored by the hardware.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-40 alt_msgdma_construct_standard_mm_to_st_descriptor 2016.06.17

alt_msgdma_construct_standard_mm_to_st_descriptor

Table 25-32: alt_msgdma_construct_standard_mm_to_st_descriptor

Prototype:

int alt_msgdma_construct_standard_mm_to_st_descriptor (alt_msgdma_dev *dev,
alt_msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32
length, alt_u32 control)

Include:

< modular_sgdma_dispatcher.h >

Parameters:

*dev-a pointer to msgdma instance.
*descriptor - a pointer to a standard descriptor structure.
*read_address — a pointer to the base address of the source memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXffffffft”.

control — control field.

Returns:

“0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description:

Function will call helper function “alt_msgdma_construct_standard_descriptor” for
constructing mm_to_st standard descriptors. Unnecessary elements are set to 0 for
completeness and will be ignored by the hardware.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_construct_standard_mm_to_mm_descriptor 25-41

alt_msgdma_construct_standard_mm_to_mm_descriptor
Table 25-33: alt_msgdma_construct_standard_mm_to_mm_descriptor
Prototype: int alt_msgdma_construct_standard_mm_to_mm_descriptor (alt_msgdma_dev

*dev, alt_msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32
*write_address, alt_u32 length, alt_u32 control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.

*descriptor - a pointer to a standard descriptor structure.
*read_address — a pointer to the base address of the source memory.
*write_address - a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXffffttff”.

control - control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_standard_descriptor” for
constructing mm_to_mm standard descriptors. Unnecessary elements are set to 0
for completeness and will be ignored by the hardware.
Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-42 alt_msgdma_construct_standard_descriptor 2016.06.17

alt_msgdma_construct_standard_descriptor

Table 25-34: alt_msgdma_construct_standard_descriptor

Prototype: static int alt_msgdma_construct_standard_descriptor (alt_msgdma_dev *dev, alt_
msgdma_standard_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_
address, alt_u32 length, alt_u32 control)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.

*descriptor - a pointer to a standard descriptor structure.

*read_address — a pointer to the base address of the source memory.

*write_address - a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXffffttff”.

control - control field.

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description: Helper functions for constructing mm_to_st, st_to_mm, mm_to_mm standard

descriptors. Unnecessary elements are set to 0 for completeness and will be ignored
by the hardware.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_construct_extended_st_to_mm_descriptor 25-43

alt_msgdma_construct_extended_st_to_mm_descriptor
Table 25-35: alt_msgdma_construct_extended_st_to_mm_descriptor

Prototype: int alt_msgdma_construct_extended_st_to_mm_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *write_address, alt_u32
length, alt_u32 control, alt_ul6 sequence_number, alt_u8 write_burst_count, alt_
ul6 write_stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.

*descriptor - a pointer to an extended descriptor structure.
*write_address — a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXftffftft”.

control — control field.

sequence number - programmable sequence number to identify which descriptor
has been sent to the master block.

write_burst_count — programmable burst count between 1 and 128 and a power of
2. Setting to 0 will cause the master to use the maximum burst count instead.

write_stride — programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, every other word it is 2, etc...power of 2. Setting to 0
will cause the master to use the maximum burst count instead.

write_stride — programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, every other word it is 2, etc...

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description: Function will call helper function “alt_msgdma_construct_extended_descriptor”
for constructing st_to_mm extended descriptors. Unnecessary elements are set to 0
for completeness and will be ignored by the hardware.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-44 alt_msgdma_construct_extended_mm_to_st_descriptor 2016.06.17

alt_msgdma_construct_extended_mm_to_st_descriptor

Table 25-36: alt_msgdma_construct_extended_mm_to_st_descriptor

Prototype:

int alt_msgdma_construct_extended_mm_to_st_descriptor (alt_msgdma_dev *dev,
alt_msgdma_extended_descriptor *descriptor, alt_u32 *read_address, alt_u32
length, alt_u32 control, alt_ul6 sequence_number, alt_u8 read_burst_count, alt_
ul6 read_stride)

Include:

< modular_sgdma_dispatcher.h >

Parameters:

*dev-a pointer to msgdma instance.
*descriptor - a pointer to an extended descriptor structure.
*read_address — a pointer to the base address of the source memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXftffftft”.

control — control field.

sequence_number — programmable sequence number to identify which descriptor
has been sent to the master block.

read_burst_count - programmable burst count between 1 and 128 and a power of 2.
Setting to 0 will cause the master to use the maximum burst count instead.

read_stride - programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, every other word it is 2, etc...

Returns:

“0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description:

Function call helper function “alt_msgdma_construct_extended_descriptor” for
constructing mm_to_st extended descriptors. Unnecessary elements are set to 0 for
completeness and will be ignored by the hardware.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_construct_extended_mm_to_mm_descriptor 25-45

alt_msgdma_construct_extended_mm_to_mm_descriptor
Table 25-37: alt_msgdma_construct_extended_mm_to_mm_descriptor

Prototype: int alt_msgdma_construct_extended_mm_to_mm_descriptor (alt_msgdma_dev
*dev, alt_msgdma_extended_descriptor *descriptor, alt_u32 *read_address, alt_u32
*write_address, alt_u32 length, alt_u32 control, alt_ul6 sequence_number, alt_u8
read_burst_count, alt_u8 write_burst_count, alt_ul6 read_stride, alt_ulé write_
stride)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev-a pointer to msgdma instance.

*descriptor - a pointer to an extended descriptor structure.
*read_address — a pointer to the base address of the source memory.
*write_address — a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXffffttff”.

control - control field.

sequence_number - programmable sequence number to identify which descriptor
has been sent to the master block.

read_burst_count — programmable burst count between 1 and 128 and a power of 2.
Setting to 0 will cause the master to use the maximum burst count instead.

write_burst_count - programmable burst count between 1 and 128 and a power of
2. Setting to 0 will cause the master to use the maximum burst count instead.

read_stride — programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, ever other word it is 2, etc...

write_stride — programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, every other word it is 2, etc...

Returns: “0” for success, -EINVAL for invalid argument, could be due to argument which has

larger value than hardware setting value.

Description: Function call helper function “alt_msgdma_construct_extended_descriptor” for

constructing mm_to_mm extended descriptors. Unnecessary elements are set to 0
for completeness and will be ignored by the hardware.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-46 alt_msgdma_construct_extended_descriptor 2016.06.17

alt_msgdma_construct_extended_descriptor

Table 25-38: alt_msgdma_construct_extended_descriptor

Prototype:

static int alt_msgdma_construct_descriptor (alt_msgdma_dev *dev, alt_msgdma_
extended_descriptor *descriptor, alt_u32 *read_address, alt_u32 *write_address,
alt_u32 length, alt_u32 control, alt_ul6 sequence_number, alt_u8 read_burst_
count, alt_u8 write_burst_count,

alt_ul6 read_stride, alt_ul6 write_stride)

Include:

< modular_sgdma_dispatcher.h >

Parameters:

*dev-a pointer to msgdma instance.

*descriptor - a pointer to an extended descriptor structure.
*read_address — a pointer to the base address of the source memory.
*write_address — a pointer to the base address of the destination memory.

length - is used to specify the number of bytes to transfer per descriptor. The largest
possible value can be filled in is “OXftffftft”.

control — control field.

sequence_number — programmable sequence number to identify which descriptor
has been sent to the master block.

read_burst_count - programmable burst count between 1 and 128 and a power of 2.
Setting to 0 will cause the master to use the maximum burst count instead.

write_burst_count — programmable burst count between 1 and 128 and a power of
2. Setting to 0 will cause the master to use the maximum burst count instead.

read_stride - programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, ever other word it is 2, etc...

write_stride — programmable transfer stride. The stride value determines by how
many words the master will increment the address. For fixed addresses the stride
value is 0, sequential it is 1, every other word it is 2, etc...

Returns:

“0” for success, -EINVAL for invalid argument, could be due to argument which has
larger value than hardware setting value.

Description:

Helper functions for constructing mm_to_st, st_to_mm, mm_to_mm extended
descriptors. Unnecessary elements are set to 0 for completeness and will be ignored
by the hardware.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_register_callback 25-47

alt_msgdma_register_callback

Table 25-39: alt_msgdma_register_callback

Prototype: void alt_msgdma_register_callback(alt_msgdma_dev *dev, alt_msgdma_callback
callback, alt_u32 control, void *context)

Include: < modular_sgdma_dispatcher.h >

Parameters: *dev — a pointer to msgdma instance.

callback — Pointer to callback routine to execute at interrupt level

control — Setting control register and OR with other control bits in the non_
blocking and blocking transfer function.

*context — pointer to user define context

Returns: N/A

Description: Associate a user-specific routine with the mSGDMA interrupt handler. If a callback
is registered, all non-blocking mSGDMA transfers will enable interrupts that will
cause the callback to be executed. The callback runs as part of the interrupt service
routine, and great care must be taken to follow the guidelines for acceptable
interrupt service routine behavior as described in the Nios II Software Developer's
Handbook. However, user can change some of the CSR control setting in blocking
transfer by calling this function.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-48 alt_msgdma_open

alt_msgdma_open

UG-01085
2016.06.17

Table 25-40: alt_msgdma_open

Prototype: alt_msgdma_dev* alt_msgdma_open (const char* name)

Include: < modular_sgdma_dispatcher.h >

Parameters: *name — Character pointer to name of msgdma peripheral as registered with the
HAL. For example, an mSGDMA in Qsys would be opened by asking for
“MSGDMA_0_DISPATCHER_INTERNAL".

Returns: Pointer to msgdma device instance struct, or null if the device.
* could not be opened.

Description: Retrieves a pointer to the mSGDMA instance.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 alt_msgdma_write_standard_descriptor 25-49

alt_msgdma_write_standard_descriptor

Table 25-41: alt_msgdma_write_standard_descriptor

Prototype: int alt_msgdma_write_standard_descriptor (alt_u32 csr_base, alt_u32 descriptor_
base, alt_msgdma_standard_descriptor *descriptor)

Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>

Parameters:

csr_base - base address of the dispatcher CSR slave port.
descriptor_base — base address of the dispatcher descriptor slave port.

*descriptor - a pointer to a standard descriptor structure.

Returns: Returns 0 upon success. Other return codes are defined in "alt_errno.h".

Description: Sends a fully formed standard descriptor to the dispatcher module. If the dispatcher

descriptor buffer is full, ““-ENOSPC” is returned. This function is not reentrant since
it must complete writing the entire descriptor to the dispatcher module and cannot
be pre-empted.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

25-50 alt_msgdma_write_extended_descriptor 2016.06.17

alt_msgdma_write_extended_descriptor

Table 25-42: alt_msgdma_write_extended_descriptor

Prototype: int alt_msgdma_write_extended_descriptor (alt_u32 csr_base, alt_u32 descriptor_
base, alt_msgdma_extended_descriptor *descriptor)
Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>
Parameters: csr_base - base address of the dispatcher CSR slave port.
descriptor_base — base address of the dispatcher descriptor slave port.
*descriptor - a pointer to an extended descriptor structure.
Returns: Returns 0 upon success. Other return codes are defined in "alt_errno.h".
Description: Sends a fully formed extended descriptor to the dispatcher module. If the dispatcher

descriptor buffer is full an error is returned. This function is not reentrant since it
must complete writing the entire descriptor to the dispatcher module and cannot be
pre-empted.

Altera Corporation

Modular Scatter-Gather DMA Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

g(i—g?o?f 7 alt_avalon_msgdma_init 25-51
alt_avalon_msgdma_init
Table 25-43: alt_avalon_msgdma_init
Prototype: void alt_msgdma_init (alt_msgdma_dev *dev, alt_u32 ic_id, alt_u32 irq)
Include: < modular_sgdma_dispatcher.h >, <altera_msgdma_descriptor_regs.h>, <altera_

msgdma_csr_regs.h>

Parameters: *dev - a pointer to mSGDMA instance.
ic_id - id of irq interrupt controller

irq - irq number that belonged to mSGDMA instance

Returns: N/A

Description: Initializes the mSGDMA controller. This routine is called from the ALTERA_
AVALON_MSGDMA_INIT macro and is called automatically by "alt_sys_init.c".

alt_msgdma_irq

Table 25-44: alt_msgdma_irq

Prototype: void alt_msgdma_irq(void *context)

Include: < modular_sgdma_dispatcher.h >, <sys/alt_irq.h>, <altera_msgdma_csr_regs.h>

Parameters: *context - a pointer to mSGDMA instance.

Returns: N/A

Description: Interrupt handler for mSGDMA. This function will call the user defined interrupt
handler if user registers their own interrupt handler with calling “alt_register_
callback”.

Modular Scatter-Gather DMA Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

25-52 Document Revision History

UG-01085
2016.06.17

Document Revision History

Table 25-45: Document Revision History

N R

May 2016

2016.05.03

Updated tables:
« Table 25-2

December 2015

2015.12.16

Added "alt_msgdma_irq" section.

November 2015

2015.11.06

Updated sections:

» Response Port
« Component Parameters

Sections added:
» Programming Model

o Stop DMA Operation
o Stop Descriptor Operation
» Recovery from Stopped on Error and Stopped on Early
Termination
« Modular Scatter-Gather DMA Prefetcher Core

o Driver Implementation
Section removed:

« Unsupported Feature

July 2014

2014.07.24

Initial release

Altera Corporation

Modular Scatter-Gather DMA Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Modular%20Scatter-Gather%20DMA%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DMA Controller Core 2 6

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The direct memory access (DMA) controller core with Avalon® interface performs bulk data transfers,
reading data from a source address range and writing the data to a different address range. An Avalon
Memor-Mapped (Avalon-MM) master peripheral, such as a CPU, can offload memory transfer tasks to
the DMA controller. While the DMA controller performs memory transfers, the master is free to perform
other tasks in parallel.

The DMA controller transfers data as efficiently as possible, reading and writing data at the maximum
pace allowed by the source or destination. The DMA controller is capable of performing Avalon transfers
with flow control, enabling it to automatically transfer data to or from a slow peripheral with flow control
(for example, UART), at the maximum pace allowed by the peripheral.

Instantiating the DMA controller in Qsys creates one slave port and two master ports. You must specify
which slave peripherals can be accessed by the read and write master ports. Likewise, you must specify
which other master peripheral(s) can access the DMA control port and initiate DMA transactions. The
DMA controller does not export any signals to the top level of the system module.

For the Nios® IT processor, device drivers are provided in the HAL system library. See the Software
Programming Model section for details of HAL support.

Functional Description

You can use the DMA controller to perform data transfers from a source address-space to a destination
address-space. The controller has no concept of endianness and does not interpret the payload data. The
concept of endianness only applies to a master that interprets payload data.

The source and destination may be either an Avalon-MM slave peripheral (for example, a constant
address) or an address range in memory. The DMA controller can be used in conjunction with
peripherals with flow control, which allows data transactions of fixed or variable length. The DMA
controller can signal an interrupt request (IRQ) when a DMA transaction completes. A transaction is a
sequence of one or more Avalon transfers initiated by the DMA controller core.

The DMA controller has two Avalon-MM master ports—a master read port and a master write port—and
one Avalon-MM slave port for controlling the DMA as shown in the figure below.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20DMA%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

26-2 Setting Up DMA Transactions 2016.06.17

Figure 26-1: DMA Controller Block Diagram

Addr, 5 "
data, Register File
control
status Read
Master
readaddress Port
Avalon-M Control| Sepaate
writeaddress Avalon-MM
Save Port Fort .
1 th Write MasterPorts
¢ IRQ eng Master|
control rort [

A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to the control port.

2. The CPU enables the DMA controller. The DMA controller then begins transferring data without
additional intervention from the CPU. The DMA’s master read port reads data from the read address,
which may be a memory or a peripheral. The master write port writes the data to the destination
address, which can also be a memory or peripheral. A shallow FIFO buffers data between the read and
write ports.

3. The DMA transaction ends when a specified number of bytes are transferred (a fixed-length transac-
tion) or an end-of-packet signal is asserted by either the sender or receiver (a variable-length transac-
tion). At the end of the transaction, the DMA controller generates an interrupt request (IRQ) if it was
configured by the CPU to do so.

4. During or after the transaction, the CPU can determine if a transaction is in progress, or if the transac-
tion ended (and how) by examining the DMA controller’s status register.

Setting Up DMA Transactions

An Avalon-MM master peripheral sets up and initiates DMA transactions by writing to registers via the
control port. The Avalon-MM master programs the DMA engine using byte addresses which are byte
aligned. The master peripheral configures the following options:

« Read (source) address location

o Write (destination) address location

o Size of the individual transfers: Byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit) or
quadword (128-bit)

« Enable interrupt upon end of transaction

« Enable source or destination to end the DMA transaction with end-of-packet signal

o Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate the DMA transaction.

The Master Read and Write Ports

The DMA controller reads data from the source address through the master read port, and then writes to
the destination address through the master write port. You program the DMA controller using byte
addresses. Read and write start addresses should be aligned to the transfer size. For example, to transfer
data words, if the start address is 0, the address will increment to 4, 8, and 12. For heterogeneous systems
where a number of different slave devices are of different widths, the data width for read and write
masters matches the width of the widest data-width slave addressed by either the read or the write master.
For bursting transfers, the burst length is set to the DMA transaction length with the appropriate unit
conversion. For example, if a 32-bit data width DMA is programmed for a word transfer of 64 bytes, the

Altera Corporation DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Addressing and Address Incrementing 26-3

length registered is programmed with 64 and the burst count port will be 16. If a 64-bit data width DMA
is programmed for a doubleword transfer of 8 bytes, the length register is programmed with 8 and the
burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports. The default depth is 2, which
makes the write action depend on the data-available status of the FIFO, rather than on the status of the
master read port.

Both the read and write master ports can perform Avalon transfers with flow control, which allows the
slave peripheral to control the flow of data and terminate the DMA transaction.

For details about flow control in Avalon-MM data transfers and Avalon-MM peripherals, refer to Avalon
Interface Specifications.

Addressing and Address Incrementing

When accessing memory, the read (or write) address increments by 1, 2, 4, 8, or 16 after each access,
depending on the width of the data. On the other hand, a typical peripheral device (such as UART) has
fixed register locations. In this case, the read/write address is held constant throughout the DMA
transaction.

The rules for address incrementing are, in order of priority:

« Ifthe control register’s RCON (or WCON) bit is set, the read (or write) increment value is 0.
o Otherwise, the read and write increment values are set according to the transfer size specified in the
control register, as shown below.

Table 26-1: Address Increment Values

byte 1
halfword 2
word 4
doubleword 8
quadword 16

In systems with heterogeneous data widths, care must be taken to present the correct address or offset
when configuring the DMA to access native-aligned slaves. For example, in a system using a 32-bit
Nios II processor and a 16-bit DMA, the base address for the UART txdata register must be divided
by the dma_data_width/cpu_data_width—2 in this example.

Parameters

This section describes the parameters you can configure.

DMA Parameters (Basic)

The DMA Parameters page includes the following parameters.

DMA Controller Core Altera Corporation

C] Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

26-4 Advanced Options 2016.06.17

Transfer Size

The parameter Width of the DMA Length Register specifies the minimum width of the DMA’s transac-
tion length register, which can be between 1 and 32. The length register determines the maximum
number of transfers possible in a single DMA transaction.

By default, the length register is wide enough to span any of the slave peripherals mastered by the read or
write ports. Overriding the length register may be necessary if the DMA master port (read or write)
masters only data peripherals, such as a UART. In this case, the address span of each slave is small, but a
larger number of transfers may be desired per DMA transaction.

Burst Transactions

When Enable Burst Transfers is turned on, the DMA controller performs burst transactions on its
master read and write ports. The parameter Maximum Burst Size determines the maximum burst size
allowed in a transaction.

In burst mode, the length of a transaction must not be longer than the configured maximum burst size.
Otherwise, the transaction must be performed as multiple transactions.

FIFO Depth

The parameter Data Transfer FIFO Depth specifies the depth of the FIFO buffer used for data transfers.
Altera recommends that you set the depth of the FIFO buffer to at least twice the maximum read latency
of the slave interface connected to the read master port. A depth that is too low reduces transfer
throughput.

FIFO Implementation

This option determines the implementation of the FIFO buffer between the master read and write ports.
Select Construct FIFO from Registers to implement the FIFO using one register per storage bit. This
option has a strong impact on logic utilization when the DMA controller’s data width is large. See the
Advanced Options section.

To implement the FIFO using embedded memory blocks available in the FPGA, select Construct FIFO
from Memory Blocks.

Advanced Options

The Advanced Options page includes the following parameters.
Allowed Transactions

You can choose the transfer datawidth(s) supported by the DMA controller hardware. The following
datawidth options can be enabled or disabled:

. Byte

« Halfword (two bytes)

« Word (four bytes)

« Doubleword (eight bytes)
+ Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the number of on-chip logic resources consumed by the
DMA controller core. For example, if a system has both 16-bit and 32-bit memories, but the DMA
controller transfers data to the 16-bit memory, 32-bit transfers could be disabled to conserve logic
resources.

Altera Corporation DMA Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Software Programming Model 26-5

Software Programming Model

This section describes the programming model for the DMA controller, including the register map and
software declarations to access the hardware. For Nios II processor users, Altera provides HAL system
library drivers that enable you to access the DMA controller core using the HAL API for DMA devices.

HAL System Library Support

The Altera-provided driver implements a HAL DMA device driver that integrates into the HAL system
library for Nios II systems. HAL users should access the DMA controller via the familiar HAL API, rather
than accessing the registers directly.

If your program uses the HAL device driver to access the DMA controller, accessing the device registers
directly interferes with the correct behavior of the driver.

The HAL DMA driver provides both ends of the DMA process; the driver registers itself as both a receive
channel (alt_dma_rxchan) and a transmit channel (al't_dma_txchan). The Nios II Software Develope’s
Handbook provides complete details of the HAL system library and the usage of DMA devices.

ioctl() Operations

ioctl () operation requests are defined for both the receive and transmit channels, which allows you to
control the hardware-dependent aspects of the DMA controller. Two ioctl () functions are defined for
the receiver driver and the transmitter driver: alt_dma_rxchan_ioctl () and alt_dma_txchan_ioctl ().
The table below lists the available operations. These are valid for both the transmit and receive channels.

Table 26-2: Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl()

T T

ALT_DMA_SET_MODE_8 | Transfers data in units of 8 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_16 | Transfers data in units of 16 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_32 |Transfers data in units of 32 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_64 | Transfers data in units of 64 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_128 | Transfers data in units of 128 bits. The parameter arg is ignored.

ALT_DMA_RX_ONLY_ON | Sets a DMA receiver into streaming mode. In this case, data is read continu-
(1) ously from a single location. The parameter arg specifies the address to read
from.

ALT_DMA_RX_ONLY_OFF | Turns off streaming mode for a receive channel. The parameter arg is ignored.

(1)
ALT_DMA_TX_ONLY_ON | Sets a DMA transmitter into streaming mode. In this case, data is written
(1) continuously to a single location. The parameter arg specifies the address to

write to.

ALT_DMA_TX_ONLY_OFF | Turns off streaming mode for a transmit channel. The parameter arg is
(1) ignored.

DMA Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

26-6 Software Files

UG-01085
2016.06.17

e ey

Table 26-2 :

1. These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old
names (ALT_DMA_TX_STREAM_ON, ALT DMA_TX_STREAM OFF, ALT_DMA_RX_STREAM_ON, and ALT DMA_
RX_STREAM_OFF) are still valid, but new designs should use the new names.

Limitations

Currently the Altera-provided drivers do not support 64-bit and 128-bit DMA transactions.

This function is not thread safe. If you want to access the DMA controller from more than one thread
then you should use a semaphore or mutex to ensure that only one thread is executing within this
function at any time.

Software Files
The DMA controller is accompanied by the following software files. These files define the low-level
interface to the hardware. Application developers should not modify these files.

« altera_avalon_dma_regs.h—This file defines the core’s register map, providing symbolic constants to
access the low-level hardware. The symbols in this file are used only by device driver functions.

« altera_avalon_dma.h, altera_avalon_dma.c—These files implement the DMA controller’s device
driver for the HAL system library.

Register Map

Programmers using the HAL API never access the DMA controller hardware directly via its registers. In
general, the register map is only useful to programmers writing a device driver.

The Altera-provided HAL device driver accesses the device registers directly. If you are writing a device
driver, and the HAL driver is active for the same device, your driver will conflict and fail to operate.

Device drivers control and communicate with the hardware through five memory-mapped 32-bit
registers.

Table 26-3:

Offs | Regi
et | ster
Na

me

0 |sta
tus

1

Rea
d/
Writ
e

RwW

DMA Controller Register Map

LEN |WEO |REO |BUS |DON
P P Y E

1| rea
dad
dre
ss

RW

Read master start address

2 |wri
tea
ddr
ess

RwW

Write master start address

Altera Corporation

DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

(0]
et

Register Map 26-7

Rea 3113 12 7 P
d/

Writ
e

RW

3| len DMA transaction length (in bytes)
gth
4|— | — |Reserved (3)
5|— | — |Reserved (3)
6|con |[RW | (2) SOF |QUA |DOU |(WCO |RCO |LEE |WEE |REE |1_ GO WOR | HW BYT
tro TWA |DWO |BLE [N N N N N EN D E
| RER |RD WOR
ESE D
T
7|— | — |Reserved (3)
Table 26-3 :

1. Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
2. These bits are reserved. Read values are undefined. Write zero.
3. This register is reserved. Read values are undefined. The result of a write is undefined.

status Register

The status register consists of individual bits that indicate conditions inside the DMA controller. The
status register can be read at any time. Reading the status register does not change its value.

Table 26-4: status Register Bits

Bit Read/Write/ Description
Number Name Clear

DONE A DMA transaction is complete. The DONE bit is set to 1 when an end of
packet condition is detected or the specified transaction length is
completed. Write zero to the status register to clear the DONE bit.

1 BUSY |R The BUSY bit is 1 when a DMA transaction is in progress.

2 REOP |R The REOP bit is 1 when a transaction is completed due to an end-of-
packet event on the read side.

3 WEOP |R The WEOP bit is 1 when a transaction is completed due to an end of
packet event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to zero.

readaddress Register

The readaddress register specifies the first location to be read in a DMA transaction. The readaddress
register width is determined at system generation time. It is wide enough to address the full range of all
slave ports mastered by the read port.

DMA Controller Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

s UG-01085
26-8 Register Map 2016.06.17

writeaddress Register

The writeaddress register specifies the first location to be written in a DMA transaction. The writead-
dress register width is determined at system generation time. It is wide enough to address the full range
of all slave ports mastered by the write port.

length Register

The length register specifies the number of bytes to be transferred from the read port to the write port.
The length register is specified in bytes. For example, the value must be a multiple of 4 for word transfers,
and a multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the write master port. When length
reaches 0 the LEN bit is set. The Iength register does not decrement below 0.

The length register width is determined at system generation time. It is at least wide enough to span any of
the slave ports mastered by the read or write master ports, and it can be made wider if necessary.

control Register

The control register is composed of individual bits that control the DMA'’s internal operation. The control
register’s value can be read at any time. The control register bits determine which, if any, conditions of the
DMA transaction result in the end of a transaction and an interrupt request.

Table 26-5: Control Register Bits

Bit Bit Name Read/ Description
Number Write/
Clear

0 BYTE RW Specifies byte transfers.

1 HW RW Specifies halfword (16-bit) transfers.

2 WORD RW Specifies word (32-bit) transfers.

3 GO RW Enables DMA transaction. When the GO bit is set to 0 during idle
stage (before execution starts), the DMA is prevented from
executing transfers. When the GO bit is set to 1 during idle stage and
the length register is non-zero, transfers occur.

If go bit is de-asserted low before write transaction complete, done
bit will never go high. It is advisable that GO bit is modified during
idle stage (no execution happened) only.

4 1_EN RW Enables interrupt requests (IRQ). When the 1_EN bit is 1, the DMA
controller generates an IRQ when the status register’s DONE bit is set
to 1. IRQs are disabled when the I_EN bit is 0.

5 REEN RW Ends transaction on read-side end-of-packet. When the REEN bit is
set to 1, a slave port with flow control on the read side may end the
DMA transaction by asserting its end-of-packet signal.

6 WEEN RW Ends transaction on write-side end-of-packet. WEEN bit shoudl be set
to 0.

Altera Corporation DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Bit

Interrupt Behavior 26-9

Bit Name Description

Number

LEEN RW Ends transaction when the length register reaches zero. When this
bit is 0, length reaching 0 does not cause a transaction to end. In
this case, the DMA transaction must be terminated by an end-of-
packet signal from either the read or write master port.

RCON RW Reads from a constant address. When RCON is 0, the read address
increments after every data transfer. This is the mechanism for the
DMA controller to read a range of memory addresses. When RCON is
1, the read address does not increment. This is the mechanism for
the DMA controller to read from a peripheral at a constant memory
address. For details, see the Addressing and Address Incrementing
section.

WCON RW Writes to a constant address. Similar to the RCON bit, when WCON is 0
the write address increments after every data transfer; when WCON is
1 the write address does not increment. For details, see Addressing
and Address Incrementing.

10

DOUBLEWORD RW Specifies doubleword transfers.

11

QUADWORD RW Specifies quadword transfers.

12

SOFTWARERESET |RW Software can reset the DMA engine by writing this bit to 1 twice.
Upon the second write of 1 to the SOFTWARERESET bit, the DMA
control is reset identically to a system reset. The logic which
sequences the software reset process then resets itself automatically.

The data width of DMA transactions is specified by the BYTE, HW, WORD, DOUBLEWORD, and QUADWORD bits.
Only one of these bits can be set at a time. If more than one of the bits is set, the DMA controller behavior
is undefined. The width of the transfer is determined by the narrower of the two slaves read and written.
For example, a DMA transaction that reads from a 16-bit flash memory and writes to a 32-bit on-chip
memory requires a halfword transfer. In this case, HW must be set to 1, and BYTE, WORD, DOUBLEWORD, and
QUADWORD must be set to 0.

To successfully perform transactions of a specific width, that width must be enabled in hardware using the
Allowed Transaction hardware option. For example, the DMA controller behavior is undefined if
quadword transfers are disabled in hardware, but the QUADWORD bit is set during a DMA transaction.

Executing a DMA software reset when a DMA transfer is active may result in permanent bus lockup (until
the next system reset). The SOFTWARERESET bit should therefore not be written except as a last resort.

Interrupt Behavior

The DMA controller has a single IRQ output that is asserted when the status register’s DONE bit equals 1
and the control register’s 1_EN bit equals 1.

Writing the status register clears the DONE bit and acknowledges the IRQ. A master peripheral can read
the status register and determine how the DMA transaction finished by checking the LEN, REOP, and
WEOP bits.

DMA Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

26-10

Document Revision History

UG-01085
2016.06.17

Document Revision History

Table 26-6: Document Revision History

e e | s

December 20015 |2015.12.12 Updated LEEN and WEEN in Control Register table.

June 2015 2015.06.12 Updated the GO bit description in the "Control Register Bits" table

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 Added a new parameter, FIFO Depth.

November 2009 |9 10 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Updated the Functional Description of the core.

Altera Corporation

DMA Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20DMA%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Video Sync Generator and Pixel Converter
Cores 2 7

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The video sync generator core accepts a continuous stream of pixel data in RGB format, and outputs the
data to an off-chip display controller with proper timing. You can configure the video sync generator core
to support different display resolutions and synchronization timings.

The pixel converter core transforms the pixel data to the format required by the video sync generator. The

Typical Placement in a System figure shows a typical placement of the video sync generator and pixel
converter cores in a system.

In this example, the video buffer stores the pixel data in 32-bit unpacked format. The extra byte in the

pixel data is discarded by the pixel converter core before the data is serialized and sent to the video sync
generator core.

Figure 27-1: Typical Placement in a System

vid ORG| BGR BGR Phel BR Data [BGR| Video [BGR

iceo 7| SGDMA & FIFO 4= e #® Format 9| Sync A
Buffer |32 i 32 bits 32 pitsConverter | 24 pits Adapter | 8P'Bengator| 8
Avalon-MM Avalon-ST

These cores are deployed in the Nios IT Embedded Software Evaluation Kit (NEEK), which includes an
LCD display daughtercard assembly attached via an HSMC connector.

Video Sync Generator

This section describes the hardware structure and functionality of the video sync generator core.

Functional Description

The video sync generator core adds horizontal and vertical synchronization signals to the pixel data that
comes through its Avalon® (Avalon-ST) input interface and outputs the data to an off-chip display
controller. No processing or validation is performed on the pixel data.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
27-2 Parameters 2016.06.17

Figure 27-2: Video Sync Generator Block Diagram

VIDEO SYNC GEMEBR

——p clk
——P reset rgb_out ﬁLP
%b data

hd ———»
<4— ready

vd ——»
—» valid
—» sop den |———»
— > eop

You can configure various aspects of the core and its Avalon-ST interface to suit your requirements. You
can specify the data width, number of beats required to transfer each pixel and synchronization signals.
See the Parameters section for more information on the available options.

To ensure incoming pixel data is sent to the display controller with correct timing, the video sync
generator core must synchronize itself to the first pixel in a frame. The first active pixel is indicated by an
sop pulse.

The video sync generator core expects continuous streams of pixel data at its input interface and assumes
that each incoming packet contains the correct number of pixels (Number of rows * Number of columns).
Data starvation disrupts synchronization and results in unexpected output on the display.

Parameters

Table 27-1: Video Sync Generator Parameters

Horizontal Sync The width of the h-sync pulse in number of pixels.
Pulse Pixels

Total Vertical Scan The total number of lines in one video frame. The value is the sum of the
Lines following parameters: Number of Rows, Vertical Blank Lines, and Vertical
Front Porch Lines.

Number of Rows The number of active scan lines in each video frame.
Horizontal Sync The polarity of the h-sync pulse; 0 = active low and 1 = active high.
Pulse Polarity
Horizontal Front The number of blanking pixels that follow the active pixels. During this period,
Porch Pixels there is no data flow from the Avalon-ST sink port to the LCD output data port.
Vertical Sync Pulse | The polarity of the v-sync pulse; 0 = active low and 1 = active high.
Polarity
Altera Corporation Video Sync Generator and Pixel Converter Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Signals 27-3

Vertical Sync Pulse | The width of the v-sync pulse in number of lines.

Lines

Vertical Front Porch | The number of blanking lines that follow the active lines. During this period,
Lines there is no data flow from the Avalon-ST sink port to the LCD output data port.

Number of Columns

The number of active pixels in each line.

Horizontal Blank
Pixels

The number of blanking pixels that precede the active pixels. During this period,
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal
Scan Pixels

The total number of pixels in one line. The value is the sum of the following
parameters: Number of Columns, Horizontal Blank Pixel, and Horizontal
Front Porch Pixels.

Beats Per Pixel The number of beats required to transfer one pixel. Valid values are 1 and 3. This
parameter, when multiplied by Data Stream Bit Width must be equal to the total
number of bits in one pixel. This parameter affects the operating clock frequency,
as shown in the following equation:

Operating clock frequency = (Beats per pixel) * (Pixel_rate), where
Pixel_rate (in MHz) = ((Total Horizontal Scan Pixels) * (Total Vertical Scan
Lines) * (Display refresh rate in Hz))/1000000.

Vertical Blank Lines | The number of blanking lines that proceed the active lines. During this period,
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Data Stream Bit The width of the inbound and outbound data.

Width

Signals

Table 27-2: Video Sync Generator Core Signals

Global Signals

clk 1 Input System clock.

reset 1 Input System reset.

Avalon-ST Signals

data Variable- | Input Incoming pixel data. The datawidth is determined by the parameter

width Data Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is ready to
receive the pixel data.

valid 1 Input This signal is not used by the video sync generator core because the
core always expects valid pixel data on the next clock cycle after the
ready signal is asserted.

Video Sync Generator and Pixel Converter Cores

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

27-4 Timing Diagrams 2016.06.17
Input Start-of-packet. This signal is asserted when the first pixel is

received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is received.

LCD Output Signals

rgb_out | Variable- |Output Display data. The datawidth is determined by the parameter Data

width Stream Bit Width.

hd 1 Output Horizontal synchronization pulse for display.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core outputs
valid data for display.

Timing Diagrams
The horizontal and vertical synchronization timings are determined by the parameters setting. The table

below shows the horizontal synchronization timing when the parameters Data Stream Bit Width and
Beats Per Pixel are set to 8 and 3, respectively.

Figure 27-3: Horizontal Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel

ok TUUUUUU UvUUUUy vduudu iy

Horizontal syncipulse

hd

den

rgb_out RIG R

Horizontal blank pixels Harizontal front parch

Horizontal synchronization width

The table below sho.ws the horizontal synchronization timing when the parameters Data Stream Bit
Width and Beats Per Pixel are set to 24 and 1, respectively.

Figure 27-4: Horizontal Synchronization Timing—24 Bits DataWidth and 1 Beat Per Pixel

ok JUUUUUU UUUUUL UUyuuy Uuuyuy

Horizontal synchronization pulse
>

hd

den

rgh_out

Horizontal blank pixels Horizontal front porch

Horizontal:synchronizatioh width

Altera Corporation Video Sync Generator and Pixel Converter Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Pixel Converter 27-5

Figure 27-5: Vertical Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel / 24 Bits
DataWidth and 1 Beat Per Pixel

\ertical synchronization pulse
—

vd T [

a LT L LWy

Horizontal synchronization width

den S I [B

\ertical blank lines \ertical front porch

\ertical synchronization width

Pixel Converter

This section describes the hardware structure and functionality of the pixel converter core.

Functional Description

The pixel converter core receives pixel data on its Avalon-ST input interface and transforms the pixel data
to the format required by the video sync generator. The least significant byte of the 32-bit wide pixel data
is removed and the remaining 24 bits are wired directly to the core's Avalon-ST output interface.

Parameters
You can configure the following parameter:

+ Source symbols per beat—The number of symbols per beat on the Avalon-ST source interface.

Signals

Table 27-3: Pixel Converter Input Interface Signals

Global Signals
clk 1 Input
Not in use.
reset_n 1 Input
Avalon-ST Signals
data_in |32 Input Incoming pixel data. Contains four 8-bit symbols that are
transferred in 1 beat.
data_out |24 Output Output data. Contains three 8-bit symbols that are transferred in 1
beat.
Video Sync Generator and Pixel Converter Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

27-6 Hardware Simulation Considerations 2016.06.17
sop_in 1 Input
eop_in 1 Input
ready_in |1 Input Wired directly to the corresponding output signals.
valid_in |1 Input
empty_in |1 Input
sop_out |1 Output
eop_out |1 Output
ready 1 Output
out Wired directly from the input signals.
valid_ 1 Output
out
empty_ 1 Output
out

Hardware Simulation Considerations

For a typical 60 Hz refresh rate, set the simulation length for the video sync generator core to at least 16.7
us to get a full video frame. Depending on the size of the video frame, simulation may take a very long
time to complete.

Document Revision History

Table 27-4: Document Revision History

I I S

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |91 No change from previous release.

March 2009 v9.0.0 No change from previous release.

November 2008 |81 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 v8.0.0 Added new parameters for both cores.

Altera Corporation

Video Sync Generator and Pixel Converter Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Video%20Sync%20Generator%20and%20Pixel%20Converter%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interval Timer Core 2 8

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The Interval Timer core with Avalon® interface is an interval timer for Avalon-based processor systems,
such as a Nios” II processor system. The core provides the following features:

+ 32-bit and 64-bit counters.

« Controls to start, stop, and reset the timer.

« Two count modes: count down once and continuous count-down.

« Count-down period register.

« Option to enable or disable the interrupt request (IRQ) when timer reaches zero.

« Optional watchdog timer feature that resets the system if timer ever reaches zero.

« Optional periodic pulse generator feature that outputs a pulse when timer reaches zero.
« Compatible with 32-bit and 16-bit processors.

Device drivers are provided in the HAL system library for the Nios II processor.

Functional Description

Figure 28-1: Interval Timer Core Block Diagram

Regjister File
status

control

Address & peiod_ n
Data Counter
Avalon-MM —> snap_n
slave inteface IRQ
to on-chip Control timeout_pulse
. resetrequest) >
logic 47“:1 Logic >

(watchdog)

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1:2008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Interval%20Timer%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
28-2 Avalon-MM Slave Interface 2016.06.17

The interval timer core has two user-visible features:

o The Avalon Memory-Mapped (Avalon-MM) interface that provides access to six 16-bit registers
« An optional pulse output that can be used as a periodic pulse generator

All registers are 16-bits wide, making the core compatible with both 16-bit and 32-bit processors.
Certain registers only exist in hardware for a given configuration. For example, if the core is
configured with a fixed period, the period registers do not exist in hardware.

The following sequence describes the basic behavior of the interval timer core:

o An Avalon-MM master peripheral, such as a Nios II processor, writes the core's control register to
perform the following tasks:

o Start and stop the timer
o Enable/disable the IRQ
 Specify count-down once or continuous count-down mode

« A processor reads the status register for information about current timer activity.

» A processor can specify the timer period by writing a value to the period registers.

« An internal counter counts down to zero, and whenever it reaches zero, it is immediately reloaded
from the period registers.

« A processor can read the current counter value by first writing to one of the snap registers to request a
coherent snapshot of the counter, and then reading the snap registers for the full value.

o When the count reaches zero, one or more of the following events are triggered:

o IfIRQs are enabled, an IRQ is generated.
« The optional pulse-generator output is asserted for one clock period.
o The optional watchdog output resets the system.

Avalon-MM Slave Interface

The interval timer core implements a simple Avalon-MM slave interface to provide access to the register
file. The Avalon-MM slave port uses the resetrequest signal to implement watchdog timer behavior.
This signal is a non-maskable reset signal, and it drives the reset input of all Avalon-MM peripherals.
When the resetrequest signal is asserted, it forces any processor connected to the system to reboot. For
more information, refer to Configuring the Timer as a Watchdog Timer.

Configuration

This section describes the options available in the MegaWizard Interace.

Timeout Period

The Timeout Period setting determines the initial value of the period registers. When the Writeable
period option is on, a processor can change the value of the period by writing to the period registers.
When the Writeable period option is off, the period is fixed and cannot be updated at runtime. See the
Hardware Options section for information on register options.

The Timeout Period is an integer multiple of the Timer Frequency. The Timer Frequency is fixed at the
frequency setting of the system clock associated with the timer. The Timeout Period setting can be
specified in units of ps (microseconds), ms (milliseconds), seconds , or clocks (number of cycles of the
system clock associated with the timer). The actual period depends on the frequency of the system clock
associated with the timer. If the period is specified in ps, ms, or seconds, the true period will be the
smallest number of clock cycles that is greater or equal to the specified Timeout Period value. For

Altera Corporation Interval Timer Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Counter Size 28-3

example, if the associated system clock has a frequency of 30 ns, and the specified Timeout Period value
is 1 ps, the true timeout period will be 1.020 microseconds.

Counter Size

The Counter Size setting determines the timer's width, which can be set to either 32 or 64 bits. A 32-bit
timer has two 16-bit period registers, whereas a 64-bit timer has four 16-bit period registers. This option
applies to the snap registers as well.

Hardware Options

The following options affect the hardware structure of the interval timer core. As a convenience, the
Preset Configurations list offers several pre-defined hardware configurations, such as:

+ Simple periodic interrupt—This configuration is useful for systems that require only a periodic IRQ
generator. The period is fixed and the timer cannot be stopped, but the IRQ can be disabled.

+ Full-featured—This configuration is useful for embedded processor systems that require a timer with
variable period that can be started and stopped under processor control.

« Watchdog—This configuration is useful for systems that require watchdog timer to reset the system in
the event that the system has stopped responding. Refer to the Configuring the Timer as a Watchdog
Timer section.

Register Options

Table 28-1: Register Options

opion | i

Writeable When this option is enabled, a master peripheral can change the count-down period by

period writing to the period registers. When disabled, the count-down period is fixed at the
specified Timeout Period, and the period registers do not exist in hardware.

Readable When this option is enabled, a master peripheral can read a snapshot of the current count-

snapshot down. When disabled, the status of the counter is detectable only via other indicators, such

as the status register or the IRQ signal. In this case, the snap registers do not exist in
hardware, and reading these registers produces an undefined value.

Start/Stop When this option is enabled, a master peripheral can start and stop the timer by writing
control bits | the START and STOP bits in the control register. When disabled, the timer runs continu-
ously. When the System reset on timeout (watchdog) option is enabled, the START bit is
also present, regardless of the Start/Stop control bits option.

Output Signal Options
Table 28-2: Output Signal Options

T

Timeout When this option is on, the core outputs a signal timeout_pulse. This signal pulses high
pulse for one clock cycle whenever the timer reaches zero. When this option is off, the timeout_
(1 clock pulse signal does not exist.
wide)
Interval Timer Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

28-4 Configuring the Timer as a Watchdog Timer 2016.06.17

I I - R

System reset | When this option is on, the core’s Avalon-MM slave port includes the resetrequest
on timeout | signal. This signal pulses high for one clock cycle whenever the timer reaches zero resulting
(watchdog) |in a system-wide reset. The internal timer is stopped at reset. Explicitly writing the START

bit of the control register starts the timer.
When this option is off, the resetrequest signal does not exist.

Refer to the Configuring the Timer as a Watchdog Timer section.

Configuring the Timer as a Watchdog Timer

To configure the core for use as a watchdog, in the MegaWizard Interface select Watchdog in the Preset
Configurations list, or choose the following settings:

Set the Timeout Period to the desired "watchdog" period.
Turn off Writeable period.

Turn off Readable snapshot.

Turn off Start/Stop control bits.

Turn off Timeout pulse.

Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (comes out of reset) stopped. A processor later starts the timer by writing
a 1 to the control register's START bit. Once started, the timer can never be stopped. If the internal
counter ever reaches zero, the watchdog timer resets the system by generating a pulse on its resetre-
quest output. The resetrequest pulse will last for two cycles before the incoming reset signal
deasserts the pulse. To prevent an indefinite resetrequest pulse, you are required to connect the
resetrequest signal back to the reset input of the timer.

To prevent the system from resetting, the processor must periodically reset the timer's count-down
value by writing one of the period registers (the written value is ignored). If the processor fails to access
the timer because, for example, software stopped executing normally, the watchdog timer resets the
system and returns the system to a defined state.

Software Programming Model

The following sections describe the software programming model for the interval timer core, including
the register map and software declarations to access the hardware. For Nios II processor users, Altera
provides hardware abstraction layer (HAL) system library drivers that enable you to access the interval
timer core using the HAL application programming interface (API) functions.

HAL System Library Support

The Altera-provided drivers integrate into the HAL system library for Nios II systems. When possible,
HAL users should access the core via the HAL API, rather than accessing the core's registers directly.

Altera provides a driver for both the HAL timer device models: system clock timer, and timestamp timer.

System Clock Driver

When configured as the system clock, the interval timer core runs continuously in periodic mode, using
the default period set. The system clock services are then run as a part of the interrupt service routine for

Altera Corporation

Interval Timer Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Software Files 28-5

this timer. The driver is interrupt-driven, and therefore must have its interrupt signal connected in the
system hardware.

The Nios II integrated development environment (IDE) allows you to specify system library properties
that determine which timer device will be used as the system clock timer.

Timestamp Driver

The interval timer core may be used as a timestamp device if it meets the following conditions:

o The timer has a writeable period register, as configured in Qsys.
« The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that determine which timer device will
be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers, calls to the
alt_timestamp_start() API function will not reset the timestamp counter. All other HAL API calls
will perform as expected.

For more information about using the system clock and timestamp features that use these drivers, refer
to the Nios II Software Developer’s Handbook. The Nios II Embedded Design Suite (EDS) also
provides several example designs that use the interval timer core.

Limitations

The HAL driver for the interval timer core does not support the watchdog reset feature of the core.

Software Files

The interval timer core is accompanied by the following software files. These files define the low-level
interface to the hardware, and provide the HAL drivers. Application developers should not modify these
files.

« altera_avalon_timer_regs.h—This file defines the core's register map, providing symbolic constants
to access the low-level hardware.

« altera_avalon_timer.h, altera_avalon_timer_sc.c, altera_avalon_timer_ts.c,
altera_avalon_timer_vars.c—These files implement the timer device drivers for the HAL system
library.

Register Map

You do not need to access the interval timer core directly via its registers if using the standard features
provided in the HAL system library for the Nios II processor. In general, the register map is only useful to
programmers writing a device driver.

The Altera-provided HAL device driver accesses the device registers directly. If you are writing a device
driver, and the HAL driver is active for the same device, your driver will conflict and fail to operate
correctly.

The table below shows the register map for the 32-bit timer. The interval timer core uses native address
alignment. For example, to access the control register value, use offset 0x4.

Interval Timer Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

28-6 Register Map

UG-01085
2016.06.17

Table 28-3: Register Map—32-bit Timer

0

| DescriptionofBis |
RN
(1) RUN TO

Description of Bits

status RW
1 control RW (1) STOP START CONT IT
0
2 periodl RW Timeout Period - 1 (bits [15:0])
3 periodh RW Timeout Period — 1 (bits [31:16])
4 snapl RW Counter Snapshot (bits [15:0])
5 snaph RW Counter Snapshot (bits [31:16])
Table 28-3 :

1. Reserved. Read values are undefined. Write zero.

For more information about native address alignment, refer to the System Interconnect Fabric for
Memory-Mapped Interfaces.

Table 28-4: Register Map—64-bit Timer

Description of Bits
50 - [s R 2 e o
0 status RW (1) RUN TO
1 control RW (1) STOP START CONT 1T
(]
2 period_0 RW Timeout Period — 1 (bits [15:0])
3 period_1 RW Timeout Period - 1 (bits [31:16])
4 period_2 RW Timeout Period - 1 (bits [47:32])
5 period_3 RW Timeout Period - 1 (bits [63:48])
6 shap_0 RW Counter Snapshot (bits [15:0])
7 snap_1 RW Counter Snapshot (bits [31:16])
8 shap_2 RW Counter Snapshot (bits [47:32])
9 shap_3 RW Counter Snapshot (bits [63:48])
Table 28-4 :

1. Reserved. Read values are undefined. Write zero.

status Register

The status register has two defined bits.

Altera Corporation

Interval Timer Core

D Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Register Map 28-7

Table 28-5: status Register Bits

I Y A S,

R/WC | The TO (timeout) bit is set to 1 when the internal counter reaches zero.
Once set by a timeout event, the TO bit stays set until explicitly cleared by a
master peripheral. Write 0 or 1 to the status register to clear the TO bit.

1 |RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this
bit reads as 0. The RUN bit is not changed by a write operation to the
status register.

control Register

The control register has four defined bits.

Table 28-6: control Register Bits

I R 7 ™ S

If the 1TO bit is 1, the interval timer core generates an IRQ when the
status register’s TO bit is 1. When the 170 bit is 0, the timer does not
generate IRQs.

1 |CONT RW The CONT (continuous) bit determines how the internal counter behaves
when it reaches zero. If the CONT bit is 1, the counter runs continuously
until it is stopped by the STOP bit. If CONT is 0, the counter stops after it
reaches zero. When the counter reaches zero, it reloads with the value
stored in the period registers, regardless of the CONT bit.

2 | START w Writing a 1 to the START bit starts the internal counter running

(1) (counting down). The START bit is an event bit that enables the counter
when a write operation is performed. If the timer is stopped, writing a 1
to the START bit causes the timer to restart counting from the number
currently stored in its counter. If the timer is already running, writing a
1 to START has no effect. Writing 0 to the START bit has no effect.

3 | STOP w Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an
(1) event bit that causes the counter to stop when a write operation is
performed. If the timer is already stopped, writing a 1 to STOP has no
effect. Writing a 0 to the stop bit has no effect.

If the timer hardware is configured with Start/Stop control bits off,
writing the STOP bit has no effect.

Table 28-6:

1. Writing 1 to both START and STOP bits simultaneously produces an undefined result.

Interval Timer Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
28-8 Interrupt Behavior 2016.06.17
period_n Registers

The period_n registers together store the timeout period value. The internal counter is loaded with the
value stored in these registers whenever one of the following occurs:

» A write operation to one of the period_n register
o The internal counter reaches 0

The timer's actual period is one cycle greater than the value stored in the period_n registers because
the counter assumes the value zero for one clock cycle.

Writing to one of the period_n registers stops the internal counter, except when the hardware is
configured with Start/Stop control bits off. If Start/Stop control bits is off, writing either register
does not stop the counter. When the hardware is configured with Writeable period disabled, writing
to one of the period_n registers causes the counter to reset to the fixed Timeout Period specified at
system generation time.

Note: A timeout period value of 0 is not a supported use case. Software configures timeout period values
greater than 0.
snap_n Registers

A master peripheral may request a coherent snapshot of the current internal counter by performing a
write operation (write-data ignored) to one of the snap_n registers. When a write occurs, the value of the
counter is copied to snap_n registers. The snapshot occurs whether or not the counter is running.
Requesting a snapshot does not change the internal counter's operation.

Interrupt Behavior

The interval timer core generates an IRQ whenever the internal counter reaches zero and the 170 bit of
the control register is set to 1. Acknowledge the IRQ in one of two ways:

+ Clear the TO bit of the status register
« Disable interrupts by clearing the 1TO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Document Revision History

Table 28-7: Document Revision History

I I S

June 2015 2015.06.12 Updated "status Register Bits" table.

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

December 2013 |v13.1.0 Updated the reset pulse description in the Configuring the Timer as a
Watchdog Timer section.

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.

November 2009 |9 10 Revised descriptions of register fields and bits.

Altera Corporation Interval Timer Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 28-9

I I

March 2009 v9.0.0 No change from previous release.

November 2008 | g1 Changed to 8-1/2 x 11 page size. Updated the core’s name to reflect the
name used in SOPC Builder.

May 2008 v8.0.0 Added a new parameter and register map for the 64-bit timer.

Interval Timer Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Interval%20Timer%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mutex Core 2 9

2016.06.17

UG-01085 @ Subscribe D Send Feedback

Core Overview

. . . ® . .
Multiprocessor environments can use the mutex core with Avalon™ interface to coordinate accesses to a
shared resource. The mutex core provides a protocol to ensure mutually exclusive ownership of a shared
resource.

The mutex core provides a hardware-based atomic test-and-set operation, allowing software in a
multiprocessor environment to determine which processor owns the mutex. The mutex core can be used
in conjunction with shared memory to implement additional interprocessor coordination features, such
as mailboxes and software mutexes.

The mutex core is designed for use in Avalon-based processor systems, such as a Nios® II processor
system. Altera provides device drivers for the Nios II processor to enable use of the hardware mutex.

Functional Description

The mutex core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface that provides access
to two memory-mapped, 32-bit registers.

Table 29-1: Mutex Core Register Map

R R I IR T
0 mutex RW OWNER ‘ VALUE
1 reset RW Reserved RESET

The mutex core has the following basic behavior. This description assumes there are multiple processors
accessing a single mutex core, and each processor has a unique identifier (ID).

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1 12008
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Mutex%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085
29-2 Configuration 2016.06.17
o When the VALUE field is 0x0000, the mutex is unlocked and available. Otherwise, the mutex is locked
and unavailable.
o The mutex register is always readable. Avalon-MM master peripherals, such as a processor, can read
the mutex register to determine its current state.

» The mutex register is writable only under specific conditions. A write operation changes the mutex
register only if one or both of the following conditions are true:

o The VALUE field of the mutex register is zero.
o The OWNER field of the mutex register matches the OWNER field in the data to be written.

» A processor attempts to acquire the mutex by writing its ID to the OWNER field, and writing a non-zero
value to the VALUE field. The processor then checks if the acquisition succeeded by verifying the OWNER
field.

o After system reset, the RESET bit in the reset register is high. Writing a one to this bit clears it.

Configuration

The MegaWizard " Interface provides the following options:

« Initial Value—the initial contents of the VALUE field after reset. If the Initial Value setting is non-zero,
you must also specify Initial Owner.

« Initial Owner—the initial contents of the OWNER field after reset. When Initial Owner is specified, this
owner must release the mutex before it can be acquired by another owner.

Software Programming Model

The following sections describe the software programming model for the mutex core. For Nios II
processor users, Altera provides routines to access the mutex core hardware. These functions are specific
to the mutex core and directly manipulate low-level hardware. The mutex core cannot be accessed via the
HAL API or the ANSI C standard library. In Nios II processor systems, a processor locks the mutex by
writing the value of its cpuid control register to the OWNER field of the mutex register.

Software Files
Altera provides the following software files accompanying the mutex core:
« altera_avalon_mutex_regs.h—Defines the core's register map, providing symbolic constants to access
the low-level hardware.

o altera_avalon_mutex.h—Defines data structures and functions to access the mutex core hardware.
« altera_avalon_mutex.c—Contains the implementations of the functions to access the mutex core

Hardware Access Routines

This section describes the low-level software constructs for manipulating the mutex core. The file altera_
avalon_mutex.h declares a structure alt_mutex_dev that represents an instance of a mutex device. It also
declares routines for accessing the mutex hardware structure, listed in the table below.

Table 29-2: Hardware Access Routines

altera_avalon_mutex_open() Claims a handle to a mutex, enabling all the other functions to
access the mutex core.

Altera Corporation Mutex Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mutex%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Mutex API 29-3

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to lock
the mutex.

altera_avalon_mutex_lock() Locks the mutex. Will not return until it has successfully
claimed the mutex.

altera_avalon_mutex_unlock() Unlocks the mutex.

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() |Tests whether the mutex has been released since reset.

These routines coordinate access to the software mutex structure using a hardware mutex core. For a
complete description of each function, see section the Mutex API section.

The code shown in below demonstrates opening a mutex device handle and locking a mutex.
#include <altera_ avalon_mutex.h>

/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open(“/dev/mutex”);

/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock(mutex, 1);

/*
* Access a shared resource here.
*/

/* release the lock */

altera_avalon_mutex_unlock(mutex);

Mutex API

This section describes the application programming interface (API) for the mutex core.

altera_avalon_mutex_is_mine()

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.
Available from |No.

ISR:

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.

altera_avalon_mutex first_lock()

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Mutex Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mutex%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

29-4

altera_avalon_mutex_lock()

UG-01085

2016.06.17
Thread-safe: Yes.
Available from | No.
ISR:
Include: <altera_avalon_mutex.h>
Parameters: dev—the mutex device to test.
Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.
Description: altera_avalon_mutex_first_lock() determines whether this mutex has
been released since reset.
altera_avalon_mutex_lock()
Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32 value)
Thread-safe: Yes.
Available from | No.
ISR:
Include: <altera_avalon_mutex.h>
Parameters: dev—the mutex device to acquire.
value—the new value to write to the mutex.
Returns: —
Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware
mutex, and at the same time, loads the mutex with the value parameter.
altera_avalon_mutex_open()
Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)
Thread-safe: Yes.
Available from | No.
ISR:
Include: <altera_avalon_mutex.h>
Parameters: name—the name of the mutex device to open.
Returns: A pointer to the mutex device structure associated with the supplied name, or
NULL if no corresponding mutex device structure was found.
Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device
structure.
altera_avalon_mutex_trylock()
Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32
value)
Mutex Core

Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mutex%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

altera_avalon_mutex_unlock() 29-5

Thread-safe:

Yes.

Available from
ISR:

No.

Include: <altera_avalon_mutex.h>
Parameters: dev—the mutex device to lock.
value—the new value to write to the mutex.
Returns: 0 = The mutex was successfully locked.
Others = The mutex was not locked.
Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and

returns immediately.

altera_avalon_mutex_unlock()

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)
Thread-safe: Yes.
Available from |No.

ISR:

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: Null.

Description: altera_avalon_mutex_unlock() releases a hardware mutex device. Upon

release, the value stored in the mutex is set to zero. If the caller does not hold
the mutex, the behavior of this function is undefined.

Document Revision History

Table 29-3: Document Revision History

I T S

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys
December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.
July 2010 v10.0.0 No change from previous release.
November 2009 |9 10 No change from previous release.
March 2009 v9.0.0 No change from previous release.
November 2008 | g1 Changed to 8-1/2 x 11 page size. No change to content.
Mutex Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mutex%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

29-6 Document Revision History 2016.06.17
I I
May 2008 v8.0.0 ’ No change from previous release.
Altera Corporation Mutex Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mutex%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Vectored Interrupt Controller Core 3 O

2016.06.17

UG-01085 X subscribe C] Send Feedback

The ability to process interrupt events quickly and to handle large numbers of interrupts can be critical to
many embedded systems. The Vectored Interrupt Controller (VIC) is designed to address these require-
ments. The VIC can provide interrupt performance four to five times better than the Nios II processor’s
default internal interrupt controller (IIC). The VIC also allows expansion to a virtually unlimited number

of interrupts, through daisy chaining.

Core Overview

The vectored interrupt controller (VIC) core serves the following main purposes:

« Provides an interface to the interrupts in your system
o Reduces interrupt overhead
« Manages large numbers of interrupts

The VIC offers high-performance, low-latency interrupt handling. The VIC prioritizes interrupts in
hardware and outputs information about the highest-priority pending interrupt. When external
interrupts occur in a system containing a VIC, the VIC determines the highest priority interrupt,
determines the source that is requesting service, computes the requested handler address (RHA), and

provides information, including the RHA, to the processor.
The VIC core contains the following interfaces:

o Up to 32 interrupt input ports per VIC core

« One Avalon® Memory-Mapped (Avalon-MM) slave interface to access the internal control status

registers (CSR)

« One Avalon Streaming (Avalon-ST) interface output interface to pass information about the selected

interrupt

+ One optional Avalon-ST interface input interface to receive the Avalon-ST output in systems with

daisy-chained VICs

The Sample System Layout Figure below outlines the basic layout of a system containing two VIC

components.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

I1sO
9001:2008
Registered

JAITERAN

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Vectored%20Interrupt%20Controller%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

30-2 Functional Description 2016.06.17

Figure 30-1: Sample System Layout

The VIC core provides the following features:

cPU Avalon-ST

A
\
[Avalon-MM Interconnecfabric
A A A
\ \ \

Cae Cae : ViC Cae Core : VIC

A

IR IR IR IR A
Avalon-ST

To use the VIC, the processor in your system needs to have a matching Avalon-ST interface to accept the
interrupt information, such as the Nios ™ II processor's external interrupt controller interface.

The characteristics of each interrupt port are configured via the Avalon-MM slave interface. When you
need more than 32 interrupt ports, you can daisy chain multiple VICs together.

o Separate programmable requested interrupt level (RIL) for each interrupt

+ Separate programmable requested register set (RRS) for each interrupt, to tell the interrupt handler
which processor register set to use

 Separate programmable requested non-maskable interrupt (RNMI) flag for each interrupt, to control
whether each interrupt is maskable or non-maskable

« Software-controlled priority arbitration scheme

The VIC core is Qsys ready and integrates easily into any Qsys generated system. For the Nios II
processor, Altera provides Hardware Abstraction Layer (HAL) driver routines for the VIC core. Refer
to Altera HAL Software Programming Model section for HAL support details.

Functional Description
Figure 30-2: VIC Block Diagram

clk —p
(clock) .
Lo Interrupt Priority Vedor interrupt_cortroller_out
irq_inpa > Reques —> P i > G i » (Avalon-ST to processor ol
(external interrupt input) d rocessing o eneation wovne P)
. . Block Block Block to interrupt_controller_in
interrut_cortroller_in of anotherVIc)
(optional Avalon-SF—»-
VIC daisy chain input) h 4}
Catrol Satus Regiters
A
cg_access
(Avalon-MM séve
from processor)
Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 External Interfaces 30-3

External Interfaces
The following sections describe the external interfaces for the VIC core.

clk
clk is a system clock interface. This interface connects to your system’s main clock source. The interface’s
signals are clk and reset_n.

irg_input

irg_input comprises up to 32 single-bit, level-sensitive Avalon interrupt receiver interfaces. These
interfaces connect to interrupt sources. There is one irq signal for each interface.

interrupt_controller_out

interrupt_controller_out is an Avalon-ST output interface, as defined in the VIC Avalon-ST
Interface Fields, configured with a ready latency of 0 cycles. This interface connects to your processor or
to the interrupt_controller_in interface of another VIC. The interface’s signals are valid and data.

Table 30-1: interrupt_controller_out and interrupt_controller_in Parameters

Parameter Value

Symbol width 45 bits
Ready latency 0 cycles

interrupt_controller_in

interrupt_controller_in is an optional Avalon-ST input interface, as defined in VIC Avalon-ST
Interface Fields, configured with a ready latency of 0 cycles. Include this interface in the second, third,
etc, VIC components of a daisy-chained multiple VIC system. This interface connects to the
interrupt_controller_out interface of the immediately-preceding VIC in the chain. The interface’s

signals are valid and data.

The interrupt_controller_out and interrupt_controller_in interfaces have identical Avalon-ST
formats so you can daisy chain VICs together in Qsys when you need more than 32 interrupts.
interrupt_controller_out always provides valid data and cannot be back-pressured.

Table 30-2: VIC Avalon-ST Interface Fields

13 12-7 6 5-0

RHA(17) RRS #iga1401399661499/ RNMI #ig | RIL#igal401399661499/fn6868
n6868 14013996
61499/
n6868

(17) RHA contains the 32-bit address of the interrupt handling routine.

(18 Refer to The INT_CONFIG Register Map Table for a description of this field.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

30-4 csr_access 2016.06.17

CSr_access

csr_access is a VIC CSR interface consisting of an Avalon-MM slave interface. This interface connects
to the data master of your processor. The interface’s signals are read, write, address, readdata, and
writedata.

Table 30-3: csr_access Parameters

Parameter Value

Read wait 1 cycle

Write wait 0 cycles

Ready latency 1 cycles
For information about the Avalon-MM slave and Avalon-ST interfaces, refer to the Avalon Interface
Specifications.
Related Information

Avalon Interface Specifications

Functional Blocks
The following main design blocks comprise the VIC core:
 Interrupt request block

o Priority processing block
» Vector generation block

Interrupt Request Block

The interrupt request block controls the input interrupts, providing functionality such as setting interrupt
levels, setting the per-interrupt programmable registers, masking interrupts, and managing software-
controlled interrupts. You configure the number of interrupt input ports when you create the component.
Refer to Parameters section for configuration options.

This block contains the majority of the VIC CSRs. The CSRs are accessed via the Avalon-MM slave
interface.

Optional output from another VIC core can also come into the interrupt request block. Refer to the Daisy
Chaining VIC Cores section for more information.

Each interrupt can be driven either by its associated irqg_input signal (connected to a component with an
interrupt source) or by a software trigger controlled by a CSR (even when there is no interrupt source
connected to the irg_input signal).

Altera Corporation Vectored Interrupt Controller Core

D Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Priority Processing Block 30-5

Figure 30-3: Interrupt Request Block

’INTiRAwismTUS ‘ ’ INT_ENABLE H INT_PENDING ‘
A

irg_inpt T » Portld[5:0

(external interupt inpyt) x32

RIL ;D7+ RIL[5:0]
per port

x32

SW_INTERUPT

per port X32

RRS
per port

> RRS[5:0]
x32

Priority Processing Block

The priority processing block chooses the interrupt with the highest priority. The block receives informa-
tion for each interrupt from the interrupt request block and passes information for the highest priority
interrupt to the vector generation block.

The interrupt request with the numerically-largest requested interrupt level field (RIL) has priority. If
multiple interrupts are pending with the same numerically-largest RIL, the numerically-lowest IRQ index
of those interrupts has priority.

The RIL is a programmable interrupt level per port. An RIL value of zero disables the interrupt. You
configure the bit width of the RIL when you create the component. Refer to the Parameters section for
configuration options.

For more information about the RIL, refer to the INT_CONFIG register in the "Register Map" section of this
chapter.

Related Information
Register Maps on page 30-6
Vector Generation Block

The vector generation block receives information for the highest priority interrupt from the priority
processing block. The vector generation block uses the port identifier passed from the priority processing
block along with the vector base address and bytes per vector programmed in the CSRs during software
initialization to compute the RHA.

Table 30-4: RHA Calculation

RHA = (port identifier x bytes per vector) + vector base address

The information then passes out of the vector generation block and the VIC using the Avalon-ST
interface. Refer to the VIC Avalon-ST Interface Fields table for details about the outgoing information.
The output from the VIC typically connects to a processor or another VIC, depending on the design.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

Daisy Chaining VIC Cores 2016.06.17

Daisy Chaining VIC Cores

You can create a system with more than 32 interrupts by daisy chaining multiple VIC cores together. This
is done by connecting the interrupt_controller_out interface of one VIC to the optional
interrupt_controller_in interface of another VIC. For information about enabling the optional input
interface, refer to the Parameters section.

For performance reasons, always directly connect VIC components. Do not include other components
between VICs.

When daisy chain input comes into the VIC, the priority processing block considers the daisy chain input
along with the hardware and software interrupt inputs from the interrupt request block to determine the
highest priority interrupt. If the daisy chain input has the highest RIL value, then the vector generation
block passes the daisy chain port values unchanged directly out of the VIC.

You can daisy chain VICs with fewer than 32 interrupt ports. The number of daisy chain connections is
only limited to the hardware and software resources. Refer to the Latency Information section for details
about the impact of multiple VICs.

Altera recommends setting the RIL width to the same value in all daisy-chained VIC components. If your
RIL widths are different, wider RILs from upstream VICs are truncated.

Latency Information

The latency of an interrupt request traveling through the VIC is the sum of the delay through each of the
blocks. Clock delays in the interrupt request block and the vector generation block are constants. The
clock delay in the priority processing block varies depending on the total number of interrupt ports.

Table 30-5: Default Interrupt Latencies

Number of Interrupt Request | Priority Processing | Vector Generation Total Interrupt Latency
Interrupt Ports Block Delay Block Delay Block Delay

1 cycle 0 cycles 1 cycle 2 cycles
2-4 1 cycle 1 cycle 1 cycle 3 cycles
5-16 1 cycle 2 cycles 1 cycle 4 cycles
17 - 32 1 cycle 3 cycles 1 cycle 5 cycles

When daisy-chaining multiple VICs, interrupt latency increases as you move through the daisy chain
away from the processor. For best performance, assign interrupts with the lowest latency requirements to
the VIC connected directly to the processor.

Register Maps

Altera Corporation

The VIC core CSRs are accessible through the Avalon-MM interface. Software can configure the core and
determine current status by accessing the registers.

Each register has a 32-bit interface that is not byte-enabled. You must access these registers with a master
that is at least 32 bits wide.

Vectored Interrupt Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Table 30-6: Control Status Registers

Offset Register Name Reset Description
Value

There are 32 interrupt configuration registers (INT_
CONFIGO — INT_CONF1G31). Each register contains fields
to configure the behavior of its corresponding interrupt.
If an interrupt input does not exist, reading the
corresponding register always returns zero, and writing is
ignored. Refer to the INT_CONFIG Register Map table

INT_CONFIG<n>

Register Maps 30-7

for the INT_CONFIG register map.

32

INT_ENABLE

R/W

The interrupt enable register. INT_ENABLE holds the
enabled status of each interrupt input. The 32 bits of the
register map to the 32 interrupts available in the VIC
core. For example, bit 5 corresponds to IRQ5. ¥

Interrupt that are not enabled are never considered by the
priority processing block, even when the interrupt input
is asserted. This applies to both maskable and non-

maskable interrupts.

33

INT_ENABLE_SET

The interrupt enable set register. Writing a 1 to a bit in
INT_ENABLE_SET sets the corresponding bit in INT_
ENABLE. Writing a 0 to a bit has no effect. Reading from

this register always returns 0. %

34

INT_ENABLE_CLR

The interrupt enable clear register. Writing a 1 to a bit in
INT_ENABLE_CLR clears corresponding bit in INT_
ENABLE. Writing a 0 to a bit has no effect. Reading from

this register always returns 0. %

35

INT_PENDING

The interrupt pending register. INT_PENDING shows the
pending interrupts. Each bit corresponds to one interrupt

input.

If an interrupt does not exist, reading its corresponding
INT_PENDING bit always returns 0, and writing is ignored.

Bits in INT_PENDING are set in the following ways:

An external interrupt is asserted at the VIC interface and

the corresponding INT_ENABLE bit is set.

An SW_INTERRUPT bit is set and the corresponding INT_

ENABLE bit is set.

INT_PENDING bits remain set as long as either condition
applies. Refer to the Interrupt Request Block for

details. 19

Vectored Interrupt Controller Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

30-8

Register Maps

UG-01085
2016.06.17

Offset Register Name Access | Reset Description
Value

INT_RAW_STATUS

The interrupt raw status register. INT_RAW_STATUS shows
the unmasked state of the interrupt inputs.

If an interrupt does not exist, reading the corresponding
INT_RAW_STATUS bit always returns 0, and writing is
ignored.

A set bit indicates an interrupt is asserted at the interface
of the VIC. The interrupt is asserted to the processor only
when the corresponding bit in the interrupt enable
register is set. 1

37

SW_INTERRUPT

R/W

The software interrupt register. SW_INTERRUPT drives the
software interrupts. Each interrupt is ORed with its
external hardware interrupt and then enabled with INT_
ENABLE. Refer to the Interrupt Request Block for
details.)

38

SW_INTERRUPT_SET

The software interrupt set register. Writing a 1 to a bit in
SW_INTERRUPT_SET sets the corresponding bit in SW_
INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. **)

39

SW_INTERRUPT_CLR

The software interrupt clear register. Writing a 1 to a bit
in SW_INTERRUPT_CLR clears the corresponding bit in SW_
INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0.

40

VIC_CONFIG

R/W

The VIC configuration register. VIC_CONFIG allows
software to configure settings that apply to the entire
VIC. Refer to the VIC_CONFIG Register Map table for
the VIC_CONFIG register map.

41

VIC_STATUS

The VIC status register. VIC_STATUS shows the current
status of the VIC. Refer to the VIC_STATUS Register
Map table for the VIC_STATUS register map.

42

VEC_TBL_BASE

R/W

The vector table base register. VEC_TBL_BASE holds the
base address of the vector table in the processor’s
memory space. Because the table must be aligned on a 4-
byte boundary, bits 1:0 must always be 0.

(19 This register contains a 1-bit field for each of the 32 interrupt inputs. When the VIC is configured for less
than 32 interrupts, the corresponding 1-bit field for each unused interrupts is tied to zero. Reading these
locations always returns 0, and writing is ignored. To determine which interrupts are present, write the
value Oxfffftttt to the register and then read the register contents. Any bits that return zero do not have an
interrupt present.

Altera Corporation

Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Register Maps 0-9

Offset Register Name Access | Reset Description
Value

VEC_TBL_ADDR

The vector table address register. VEC_TBL_ADDR provides
the RHA for the IRQ value with the highest priority
pending interrupt. If no interrupt is active, the value in
this register is 0.

If daisy chain input is enabled and is the highest priority
interrupt, the vector table address register contains the
RHA value from the daisy chain input interface.

Table 30-7: The INT_CONFIG Register Map

Field Name | Access | Reset Description
Value

The requested interrupt level field. RIL contains the interrupt
level of the interrupt requesting service. The processor can use the
value in this field to determine if the interrupt is of higher priority
than what the processor is currently doing.

RNMI R/W

The requested non-maskable interrupt field. RNMI contains the
non-maskable interrupt mode of the interrupt requesting service.
When 0, the interrupt is maskable. When 1, the interrupt is non-
maskable.

7:12

RRS R/W

The requested register set field. RRS contains the number of the
processor register set that the processor should use for processing
the interrupt. Software must ensure that only register values
supported by the processor are used.

13:31

Reserved

For expanded definitions of the terms in the INT_CONFIG Register Map table, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

Vectored Interrupt Controller Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

30-10 Register Maps 2016.06.17

Table 30-8: The VIC_CONFIG Register Map

Field Name | Access | Reset Description
Value

VEC_SIZE The vector size field. VEC_SI1ZE specifies the number of bytes in each
vector table entry. VEC_SIZE is encoded as log2 (number of words) - 2.
Namely:

0—4 bytes per vector table entry
1—8 bytes per vector table entry
2—16 bytes per vector table entry
3—32 bytes per vector table entry
4—64 bytes per vector table entry
5—128 bytes per vector table entry
6—256 bytes per vector table entry
7—512 bytes per vector table entry

3 DC R/'W |0 The daisy chain field. DC serves the following purposes:

Enables and disables the daisy chain input interface, if present. Write a
1 to enable the daisy chain interface; write a 0 to disable it.

Detects the presence of the daisy chain input interface. To detect, write
a 1 to DC and then read DC. A return value of 1 means the daisy chain
interface is present; 0 means the daisy chain interface is not present.

4:31 | Reserved

Table 30-9: The VIC_STATUS Register Map

Field Access | Reset Description
Name Value

PRI The highest priority interrupt field. HI_PRI_IRQ contains the IRQ
: IRQ number of the active interrupt with the highest RIL. When there is no
5 active interrupt (1P is 0), reading from this field returns 0.

When the daisy chain input is enabled and it is the highest priority
interrupt, then the value read from this field is 32.

Bit 5 always reads back 0 when the daisy chain input is not present.

6 | Reserved
3
0
311P R 0 The interrupt pending field. 1P indicates when there is an interrupt
1 ready to be serviced. A 1 indicates an interrupt is pending; a 0 indicates
no interrupt is pending.
Altera Corporation Vectored Interrupt Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Register Maps 30-11

Related Information

+ Exception Handling
 Priority Processing Block on page 30-5

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

https://documentation.altera.com/#/00075715-NT$NT00075638
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

30-12 Parameters 2016.06.17

Parameters

Generation-time parameters control the features present in the hardware.The table below lists and
describes the parameters you can configure.

Table 30-10: Parameters for VIC Core

Number of 1-32 Specifies the number of irg_input interrupt interfaces.
interrupts

RIL width 1-6 4 Specifies the bit width of the requested interrupt level.
Daisy chain True / False False | Specifies whether or not to include an input interface for
enable daisy chaining VICs together.

Override D f’fa“lt True/False False | Allows manual specification of the interrupt signal
Interrupt Signal latency.

Latency

Manual Interrupt |2 -5 2 Specifies the number of cycles it takes to process

Signal Latency incoming interrupt signals.

Because multiple VICs can exist in a single system, Qsys assigns a unique interrupt controller identifica-
tion number to each VIC generated.

Keep the following considerations in mind when connecting the core in your Qsys system:

Altera Corporation

The CSR access interface (csr_access) connects to a data master port on your processor.

The daisy chain input interface (interrupt_controller_in) is only visible when the daisy chain
enable option is on.

The interrupt controller output interface (interrupt_controller_out) connects either to the EIC
port of your processor, or to another VIC’s daisy chain input interface (interrupt_controller_in).
For Qsys interoperability, the VIC core includes an Avalon-MM master port. This master interface is
not used to access memory or peripherals. Its purpose is to allow peripheral interrupts to connect to
the VIC in Qsys. The port must be connected to an Avalon-MM slave to create a valid Qsys system.
Then at system generation time, the unused master port is removed during optimization. The most
simple solution is to connect the master port directly into the CSR access interface (csr_access).
Qsys automatically connects interrupt sources when instantiating components. When using the
provided HAL device driver for the VIC, daisy chaining multiple VICs in a system requires that each
interrupt source is connected to exactly one VIC. You need to manually remove any extra connections.

Vectored Interrupt Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Altera HAL Software Programming Model 30-13

Altera HAL Software Programming Model

The Altera-provided driver implements a HAL device driver that integrates with a HAL board support
package (BSP) for Nios II systems. HAL users should access the VIC core via the familiar HAL API.

Software Files

The VIC driver includes the following software files. These files provide low-level access to the hardware
and drivers that integrate with the Nios II HAL BSP. Application developers should not modify these files.

« altera_vic_regs.h—Defines the core’s register map, providing symbolic constants to access the low-
level hardware.

« altera_vic_funnel.h, altera_vic_irq.h, altera_vic_irq.h, altera_vic_irq_init.h—Define the prototypes
and macros necessary for the VIC driver.

o altera_vic.c, altera_vic_irq_init.c, altera_vic_isr_register.c, altera_vic_sw_intr.c, altera_vic_set_level.c,
altera_vic_funnel_non_preemptive_nmi.S, altera_vic_funnel_non_preemptive.S, and
altera_vic_funnel_preemptive.S—Provide the code that implements the VIC driver.

o altera_<name>_vector_tbl.S—Provides a vector table file for each VIC in the system. The BSP
generator creates these files.

Macros

Macros to access all of the registers are defined in altera_vic_regs.h. For example, this file includes
macros to access the INT_CONFIG register, including the following macros:

#define 10ADDR_ALTERA_VIC_INT_CONFIG(base, irq)
__ 10_CALC_ADDRESS_NATIVE(base, irq)
#define 10RD_ALTERA_VIC_INT_CONFIG(base, irq) I0RD(base, irq)
#define 10WR_ALTERA_VIC_INT_CONFIG(base, irqg, data) I0WR(base, irq,
data)
#define ALTERA_VIC_INT_CONFIG_RIL_MSK (0x3f)
#define ALTERA_VIC_INT_CONFIG_RIL_OFST (0)
#define ALTERA_VIC_INT_CONFIG_RNMI_MSK (0x40)
#define ALTERA_VIC_INT_CONFIG_RNMI_OFST (6)
#define ALTERA_VIC_INT_CONFIG_RRS_MSK (0x1f80)
#define ALTERA_VIC_INT_CONFIG_RRS_OFST (7)

For a complete list of predefined macros and utilities to access the VIC hardware, refer to the following
files:

« <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\inc\altera_vic_regs.h
o <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\altera_vic_funnel.h
o <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\altera_vic_irq.h

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-14 Data Structure 2016.06.17

Data Structure

Example 30-1: Device Data Structure

#define ALT_VIC_MAX_INTR_PORTS (32)

typedef struct alt_vic_dev
{

void *base; /* Base address of VIC */
alt_u32 intr_controller_id; /* Interrupt controller ID */
alt_u32 num_of_intr_ports; /* Number of interrupt ports */
alt_u32 ril_width; /* RIL width */

alt_u32 daisy_chain_present; /* Daisy-chain input present */
alt_u32 vec_size; /* Vector size */

void *vec_addr; /* Vector table base address */

alt_u32 int_config[ALT_VIC_MAX_INTR_PORTS]; /* INT_CONFIG settings
for each interrupt */

} alt_vic_dev;

VIC API

The VIC device driver provides all the routines required of an Altera HAL external interrupt controller
(EIC) device driver. The following functions are required by the Altera Nios II enhanced HAL interrupt
APIL:

o alt_ic_isr_register ()

o alt_ic_irq_enable()

o alt_ic_irq_disable()

o alt_ic_irq_enabled()
These functions write to the register map to change the setting or read from the register map to check
the status of the VIC component thru a memory-mapped address.

For detailed descriptions of these functions, refer to the to the HAL API Reference chapter of the Nios
II Software Developer’s Handbook.

The table below lists the API functions specific to the VIC core and briefly describes each. Details of
each function follow the table.

Table 30-11: Function List

T T

alt_vic_sw_interrupt_set() Sets the corresponding bit in the SW_INTERRUPT register to
enable a given interrupt via software.

alt_vic_sw_interrupt_clear() Clears the corresponding bit in the SW_INTERRUPT register to
disable a given interrupt via software.

alt_vic_sw_interrupt_status() Reads the status of the SW_INTERRUPT register for a given
interrupt.

alt_vic_irg_set_level) Sets the interrupt level for a given interrupt.

Related Information
HAL API Reference

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

https://documentation.altera.com/#/00075715-NT$NT00075666
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

alt_vic_sw_interrupt_set()

alt_vic_sw_interrupt_set()

30-15

Prototype: int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq)

Thread-safe: |No

Available No

from ISR:

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: |ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid

Description: | Triggers a single software interrupt

alt_vic_sw_interrupt_clear()

Prototype: int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq)

Thread-safe: | No

Available Yes; if interrupt preemption is enabled, disable global interrupts before calling this

from ISR: routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: |ic_id—the interrupt controller identification number as defined in system.h
irq—the interrupt value as defined in system.h

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid

Description: | Clears a single software interrupt

alt_vic_sw_interrupt_status()

Prototype: alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq)

Thread-safe: | No

Available Yes; if interrupt preemption is enabled, disable global interrupts before calling this
from ISR: routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: |ic_id—the interrupt controller identification number as defined in system.h

irqg—the interrupt value as defined in system.h

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-16 alt_vic_irq_set_level() 2016.06.17

Returns: Returns non-zero if the corresponding software trigger interrupt is active; otherwise zero
for one or more of the following reasons:

The corresponding software trigger interrupt is disabled
The value in ic_id is invalid

The value in irq is invalid

Description: | Checks the software interrupt status for a single interrupt

alt_vic_irg_set_level()
Prototype: int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level)
Thread-safe: | No

Available No
from ISR:

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters: |ic_id—the interrupt controller identification number as defined in system.h
irqg—the interrupt value as defined in system.h

level—the interrupt level to set

Returns: Returns zero if successful; otherwise non-zero for one or more of the following reasons:
The value in ic_id is invalid
The value in irq is invalid

The value in level is invalid

Description: | Sets the interrupt level for a single interrupt.

Altera recommends setting the interrupt level only to zero to disable the interrupt or to
the original value specified in your BSP. Writing any other value could violate the overlap-
ping register set, priority level, and other design rules. Refer to the VIC BSP Design Rules
for Altera Hal Implementation section for more information.

Run-time Initialization

During system initialization, software configures the each VIC instance's control registers using settings
specified in the BSP. The RIL, RRS, and RNMI fields are written into the interrupt configuration register
of each interrupt port in each VIC. All interrupts are disabled until other software registers a handler
using the alt_ic_isr_register() APL

Board Support Package

The BSP you generate for your Nios II system provides access to the hardware in your system, including
the VIC. The VIC driver includes scripts that the BSP generator calls to get default interrupt settings and
to validate settings during BSP generation. The Nios II BSP Editor provides a mechanism to edit these
settings and generate a BSP for your Qsys design.

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 altera_vic_driver.enable_preemption 30-17

The generator produces a vector table file for each VIC in the system, named
altera_<name>_vector_tbl.S. The vector table's source path is added to the BSP Makefile for compilation
along with other VIC driver source code. Its contents are based on the BSP settings for each VIC's
interrupt ports.

The VIC does not support runtime stack checking feature (hal.enable_runtime_stack_checking) in the
BSP setting.

VIC BSP Settings

The VIC driver scripts provide settings to the BSP. The number and naming of these settings depends on
your hardware system's configuration, specifically, the number of optional shadow register sets in the
Nios II processor, the number of VIC controllers in the system, and the number of interrupt ports each
VIC has.

Certain settings apply to all VIC instances in the system, while others apply to a specific VIC instance.
Settings that apply to each interrupt port apply only to the specified interrupt port number on that VIC
instance.

The remainder of this section lists details and descriptions of each VIC BSP setting.

altera_vic_driver.enable_preemption

Identifier: ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED

Type: BooleanDefineOnly

Default value: 1 when all components connected to the VICs support
preemption. 0 when any of the connected components don’t
support preemption.

Destination file: system.h

Description: Enables global interrupt preemption (nesting). When enabled

(set to 1), the macro ALTERA_VIC_DRIVER_ISR_PREEMPTION_
ENABLED is defined in system.h.

Two types of ISR preemption are available. This setting must be
enabled along with other settings to enable specific types of
preemption.

All preemption settings are dependant on whether the device
drivers in your BSP support interrupt preemption. For more
information about preemption, refer to the Exception
Handling chapter of the Nios II Software Developer’s
Handbook.

Occurs: Once per VIC

altera_vic_driver.enable_preemption_into_new_register_set

Identifier: ALTERA_VIC_DRIVER_PREEMPTION_INTO_NEW_
REGISTER_SET_ENABLED

Type: BooleanDefineOnly
Default value: 0
Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

30-18 altera_vic_driver.enable_preemption_rs_<n> 2016.06.17

Destination file:

system.h

Description:

Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing, and
that higher priority interrupt uses a different register set than
the interrupt currently being serviced.

When this setting is enabled (set to 1), the macro ALTERA_VIC_
DRIVER_ISR_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLED
is defined in system.h and the Nios II config.ANI (automatic
nested interrupts) bit is asserted during system software initiali-
zation.

Use this setting to limit interrupt preemption to higher priority
(RIL) interrupts that use a different register set than a lower
priority interrupt that might be executing. This setting allows
you to support some preemption while maintaining the lowest
possible interrupt response time. However, this setting does not
allow an interrupt at a higher priority (RIL) to preempt a lower
priority interrupt if the higher priority interrupt is assigned to
the same register set as the lower priority interrupt.

Occurs:

Once per VIC

altera_vic_driver.enable_preemption_rs_<n>

Identifier: ALTERA_VIC_DRIVER_ENABLE_PREEMPTION_RS_<n>
Type: Boolean

Default value: 0

Destination file: system.h

Altera Corporation

Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 altera_vic_driver.linker_section 30-19

Description: Enables interrupt preemption (nesting) if a higher priority
interrupt is asserted while a lower priority ISR is executing, for
all interrupts that target the specified register set number.

When this setting is enabled (set to 1), the vector table for each
VIC utilizes a special interrupt funnel that manages
preemption. All interrupts on all VIC instances assigned to that
register set then use this funnel.

When a higher priority interrupt preempts a lower priority
interrupt running in the same register set, the interrupt funnel
detects this condition and saves the processor registers to the
stack before calling the higher priority ISR. The funnel code
restores registers and allows the lower priority ISR to continue
running once the higher priority ISR completes.

Because this funnel contains additional overhead, enabling this
setting increases interrupt response time substantially for all
interrupts that target a register set where this type of
preemption is enabled.

Use this setting if you must guarantee that a higher priority
interrupt preempts a lower priority interrupt, and you assigned
multiple interrupts at different priorities to the same Nios II
shadow register set.

Occurs: Per register set; <n> refers to the register set number.

altera_vic_driver.linker_section

Identifier: ALTERA_VIC_DRIVER_LINKER_SECTION

Type: UnquotedString

Default value: text

Destination file: system.h

Description: Specifies the linker section that each VIC's generated vector

table and each interrupt funnel link to. The memory device that
the specified linker section is mapped to must be connected to
both the Nios II instruction and data masters in your Qsys
system.

Use this setting to link performance-critical code into faster
memory. For example, if your system's code is in DRAM and
you have an on-chip or tightly-coupled memory interface for
interrupt handling code, assigning the VIC driver linker section
to a section in that memory improves interrupt response time.

For more information about linker sections and the Nios II BSP
Editor, refer to the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera_vic_driver.<name>.vec_size

UG-01085
2016.06.17

Occurs:

Once per VIC

altera_vic_driver.<name>.vec_size

Identifier: <name>_ VEC_SIZE
Type: DecimalNumber
Default value: 16

Destination file: system.h

Description:

Specifies the number of bytes in each vector table entry. Legal
values are 16, 32, 64, 128, 256, and 512.

The generated VIC vector tables in the BSP require a minimum
of 16 bytes per entry.

If you intend to write your own vector table or locate your ISR
at the vector address, you can use a larger size.

The vector table's total size is equal to the number of interrupt
ports on the VIC instance multiplied by the vector table entry
size specified in this setting.

Occurs:

Per instance; <name> refers to the component name you assign
in Qsys.

altera_vic_driver.<name>.irqg<n>_rrs

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RRS
Type: DecimalNumber
Default value: Refer to the Default Settings for RRS and RIL section.

Destination file:

system.h

Description: Specifies the RRS for the interrupt connected to the
corresponding port. Legal values are 1 to the number of shadow
register sets defined for the processor.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and

<n> refers to the IRQ number that you assign in Qsys. Refer to
Qsys to determine which IRQ numbers correspond to which
components in your design.

altera_vic_driver.<name>.irg<n>_ril

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RIL
Type: DecimalNumber
Default value: Refer to Default Settings for RRS and RIL section.

Destination file:

system.h

Altera Corporation

Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 altera_vic_driver.<name>.irq<n>_rnmi 30-21
Description: Specifies the RIL for the interrupt connected to the
corresponding port. Legal values are 0 to 2RIL width -1.
Occurs: Per IRQ per instance; <name> refers to the VIC’s name and

<n> refers to the IRQ number that you assign in Qsys. Refer to
Qsys to determine which IRQ numbers correspond to which
components in your design.

altera_vic_driver.<name>.irg<n>_rnmi

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RNMI
Type: Boolean

Default value: 0

Destination file: system.h

Description: Specifies whether the interrupt port is a maskable or non-

maskable interrupt (NMI). Legal values are 0 and 1. When set
to 0, the port is maskable. NMIs cannot be disabled in
hardware and there are several restrictions imposed for the RIL
and RRS settings associated with any interrupt with NNI
enabled.

Occurs: Per IRQ per instance; <name> refers to the VIC’s name and

<n> refers to the IRQ number that you assign in Qsys. Refer to
Qsys to determine which IRQ numbers correspond to which
components in your design.

Default Settings for RRS and RIL
The default assignment of RRS and RIL values for each interrupt assumes interrupt port 0 on the VIC
instance attached to your processor is the highest priority interrupt, with successively lower priorities as
the interrupt port number increases. Interrupt ports on other VIC instances connected through the first
VIC's daisy chain interface are assigned successively lower priorities.

To make effective use of the VIC interrupt setting defaults, assign your highest priority interrupts to low
interrupt port numbers on the VIC closest to the processor. Assign lower priority interrupts and
interrupts that do not need exclusive access to a shadow register set, to higher interrupt port numbers, or
to another daisy-chained VIC.

The following steps describe the algorithm for default RIL assignment:

1.
2,
3.

The formula 2RILWidth _1 §5 ysed to calculate the maximum RIL value.
interrupt port 0 on the VIC connected to the processor is assigned the highest possible RIL.

The RIL value is decremented and assigned to each subsequent interrupt port in succession until the
RIL value is 1.

The RILs for all remaining interrupt ports on all remaining VICs in the chain are assigned 1.

The following steps describe the algorithm for default RRS assignment:
The highest register set number is assigned to the interrupt with the highest priority.
Each subsequent interrupt is assigned using the same method as the default RIL assignment.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

30-22

UG-01085

VIC BSP Design Rules for Altera Hal Implementation 2016.06.17

For example, consider a system with two VICs, VIC0 and VIC1. Each VIC has an RIL width of 3, and
each has 4 interrupt ports. VICO is connected to the processor and VIC1 to the daisy chain interface on
VICO. The processor has 3 shadow register sets.

Table 30-12: Default RRS and RIL Assignment Example

T N N T
3

0 0 7
0 1 2 6
0 2 1 5
0 3 1 4
1 0 1 3
1 1 1 2
1 2 1 1
1 3 1 1

VIC BSP Design Rules for Altera Hal Implementation
The VIC BSP settings allow for a large number of combinations. This list describes some basic design
rules to follow to ensure a functional BSP:

Each component’s interrupt interface in your system should only be connected to one VIC instance
per processor.

The number of shadow register sets for the processor must be greater than zero.

RRS values must always be greater than zero and less than or equal to the number of shadow register
sets.

RIL values must always be greater than zero and less than or equal to the maximum RIL.

All RILs assigned to a register set must be sequential to avoid a higher priority interrupt overwriting
contents of a register set being used by a lower priority interrupt.

Note: The Nios II BSP Editor uses the term “overlap condition” to refer to nonsequential RIL

assignments.

NMIs cannot share register sets with maskable interrupts.

NMIs must have RILs set to a number equal to or greater than the highest RIL of any maskable
interrupt. When equal, the NMIs must have a lower logical interrupt port number than any maskable
interrupt.

The vector table and funnel code section's memory device must connect to a data master and an
instruction master.

NMIs must use funnels with preemption disabled.

When global preemption is disabled, enabling preemption into a new register set or per-register-set
preemption might produce unpredictable results. Be sure that all interrupt service routines (ISR) used
by the register set support preemption.

Enabling register set preemption for register sets with peripherals that don't support preemption might
result in unpredictable behavior.

RTOS Considerations
BSPs configured to use a real time operating system (RTOS) might have additional software linked into
the HAL interrupt funnel code using the ALT_0S_INT_ENTER and ALT_OS_INT_EXIT macros. The exact

Altera Corporation

Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . .

2016.06.17 Implementing the VIC in Qsys 30-23
nature and overhead of this code is RTOS-specific. Additional code adds to interrupt response and
recovery time. Refer to your RTOS documentation to determine if such code is necessary.

Implementing the VIC in Qsys

This section describes how to incorporate one or more VICs in your Qsys system, and how to support the
VIC in software.

Adding VIC Hardware

When you add a VIC to your Qsys system, you must perform the following high-level tasks:

1. Add the EIC interface to your Nios II processor core

2. Optionally add shadow register sets to your Nios II processor core (required if you intend to use HAL
interrupt support)

3. Add and parameterize one or more VIC components

4. Connect interrupt sources to the VIC component(s)

Adding the EIC Interface Shadow Register Set

This section describes how to add the EIC interface and shadow register sets to a Nios II processor core in
Qsys, through the parameter editor interface.

1. In Qsys, double-click the Nios II processor to open the parameter editor interface.
2. Enable the EIC interface on the Nios II processor by selecting it in the Interrupt Controller list in the
Advanced Features tab, as shown in the figure below.

There are two options for Interrupt Controller: Internal and External. If you select Internal, the
processor is implemented with the internal interrupt controller. Select External to implement the
processor with an EIC interface.

Note: When you implement the EIC interface, you must connect an EIC, such as the VIC. Failure to
connect an EIC results in a Qsys error.

3. Select the desired number of shadow register sets. In the Number of shadow register sets list, select
the number of register sets that matches your system performance goals.

4. Click Finish to exit from the Nios II parameter editor interface . Notice that the processor shows an
unconnected interrupt_controller_in Avalon-ST sink, as shown in the figure below.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-24 Adding the EIC Interface Shadow Register Set 2016.06.17

Figure 30-4: Configuring the Interrupt Controller and Shadow Register Sets

i | Parameters &3
System: IC_Example_sws_sopc Path: cpu

Nios Il (Classic) Processor
altera_nios2 _qsys

r Core Mios I |/ Caches and Memory Interfaces rAdvancEd Features |/ MM ahd MPU Settings |/ JTAG Debug Module

[~ General

Interrupt controller: =

Humber of shadow register sets (0-637 |,7' |

External interrupt controller and shadow register setzonly supparted in Mios 1T care.
Internal interrupt cantraller is the only option for Mios [1fe and Mios 15 care.

Figure 30-5: Nios Il Processor with EIC Interface

Elﬂg cpu Mios || Processaor
—* Clk Clack nput
—* reset Fezet Input
— Cata_master Avalon Memory Mapped Master
—| instruction_master Avalon Memory Mapped Master
—* interrupt_controller_in Avalon Streaming ink
—<| debug_reset_reguest Feset Qutput

Shadow register sets reduce the context switching overhead associated with saving and restoring registers,
which can otherwise be significant. If possible, add one shadow register set for each interrupt that requires
high performance.

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . L. . . .
2016.06.17 VIC Instantiation, Parameterization, and Connection 30-25

VIC Instantiation, Parameterization, and Connection

After you add the EIC interface and shadow register set(s) to the Nios II processor, you must instantiate
and parameterize the VIC in your Qsys system.

Instantiation
To instantiate a VIC in your Qsys system, execute the following steps:

1. Browse to the IP Catalog window in Qsys.

2. Type "vector" in the search box. The interface hides all components except the VIC, as shown in the
tigure below.

3. Double click the Vectored Interrupt Controller component to add this component to your Qsys
System.

Figure 30-6: Vectored Interrupt Controller Component

P Catalog i 2 P i)
L wectar X @
Pruje_ct
H Mew Comoprent...
Library

¢ Processors and Peripherals
¢ Feripherals
@ Sectored Interrupt Controller

[l

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-26 Parameterization 2016.06.17

Parameterization

When you add the VIC to your system, the Vectored Interrupt Controller interface appears as shown
below.

Figure 30-7: Vectored Interrupt Controller Parameterization

Vectored Interrupt Controller - vic_0

“ Vectored Interrupt Controller

Megecerw Al1ETA_WIC Documentation

|- i ‘
[~ Block Diagram ¥| [Parameter Ik

[J5haow signals Murmber of Interrupts:

B]
= Reguested Interrupt Level (RIL) Width: |4

[] DuSY_CHAIN_EMNABLE

K - interrupt_cantrolier_oul - g
ek auaion,stream [~ Interrupt Latency Processing ||

el s [* Default Interrupt Latency |

merrum Number of Interrupts |Interrupt Processing Latency

1 2 Cyrles
2-4 2 Cycles
5-16 4 CTyrles
17 - 32 5 Cyrles

[[] owerride Default Interrupt Signal Latenry
Manual Interrupt Signal Latenoy: Dj

The VIC interface allows you to specify the following options:

o Number of Interrupts—The number of interrupts your VIC must support.

+ Requested Interrupt Level (RIL) Width—The number of bits allocated to represent the interrupt level
for each interrupt.

« DAISY_CHAIN_ENABLE—Allows the VIC to daisy chain to another EIC. Turn on this option if you
want to support multiple VICs in your system.

Note: Study the VIC Daisy-Chain example that accompanies this document for a usage example.

+ Override Default Interrupt Signal Latency—Allows manual specification of the interrupt signal
latency.

« Manual Interrupt Signal Latency—Specifies the number of cycles it takes to process the incoming
interrupt signals.

When you have finished parameterizing the VIC, click Finish to instantiate the component in your Qsys
system.

Altera Corporation Vectored Interrupt Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

VIC Connections

VIC Connections 30-27

When you have added the VIC to your system, it appears in Qsys as shown below.

Note: If you have enabled daisy chaining, Qsys adds an Avalon-ST sink, called

interrupt_controller_in, to the VIC.

Figure 30-8: VIC Interfaces

vl S]]

vic

Clk

reset
irg_input
Csr_access
interrupt_controller_out

!‘-fectnred Interrupt Controller

iCII:u:k [npt

Fezet Input

ilnterrupt Feceiver

[Awalon Memory Mapped Slawve
!;-Walnn Streaming Source

After adding a VIC to the Qsys system, you must parameterize the VIC and the EIC interface at the
system level. Immediately after you add the VIC, several error messages appear. Resolve these error
messages by executing the following actions in any order:

o Connect the VIC’s interrupt_controller_out Avalon-ST source to the interrupt_controller_in
Avalon-ST sink on either the Nios II processor or the next VIC in a daisy-chained configuration.

« Connect the Nios II processor's data_master Avalon-MM ports to the csr_access Avalon-MM slave

port.

« Assign an interrupt number for each interrupt-based component in the system, as shown below. This
step connects each component to an interrupt port on the VIC.

Note: If your system contains more than one EIC connected to a single processor, you must ensure that
each component is connected to an interrupt port on only one EIC.

Figure 30-9: Assigning Interrupt Numbers

Ox0440

Ox0460

Ox0400

IRD o
09000

w945 T

D47

w431

D93

IRD 7

L

When you use the HAL VIC driver, the driver makes a default assignment from register sets to interrupts.
The default assignment makes some assumptions about interrupt priorities, based on how devices are

connected to the VIC.

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-28 Software for VIC 2016.06.17

Note: To make effective use of the VIC interrupt setting defaults, assign your highest priority interrupts
to low interrupt port numbers on the VIC closest to the processor.

Software for VIC

If you write an interrupt handler for a system based on the VIC component, you must use the HAL
enhanced interrupt API to register the handler and control its runtime environment. The enhanced
interrupt API provides a number of functions for use with EICs, including the VIC. This section describes
a subset of the functions in the enhanced interrupt API.

For information about the enhanced interrupt API, refer to “Interrupt Service Routines” in the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

In particular, this section shows how to code a driver so that it supports both the enhanced API and the
legacy API. This must include testing for the presence of the enhanced API, and conditionally calling the
appropriate function.

Related Information

Interrupt Service Routines

alt_ic_isr_register() versus alt_irq_register()

The enhanced API function alt_ic_isr_register() is very similar to the legacy function
alt_irg_register(), with a few important differences. The differences between these two functions are
best understood by examining the code in Example 30-2. This example registers a timer interrupt in
either the legacy API or the enhanced API, whichever is implemented in the board support package
(BSP). The example is taken directly from the example code accompanying this document.

Example 30-2: Registering an ISR with Both APIs

#ifdef ALT_ENHANCED_INTERRUPT_API_PRESENT
void timer_interrupt_latency_init (void* base, alt_u32 irg_controller_id,
alt_u32 irq)

/* Register the interrupt */
alt_ic_isr_register(irg_controller_id, irq, timer_interrupt_latency_irq,
base, NULL);
/* Start timer */
T10WR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
| ALTERA_AVALON_TIMER_CONTROL_START_MSK);
}
#else
void timer_interrupt_latency_init (void* base, alt_u32 irq)

/* Register the interrupt */

alt_irg_register(irq, base, timer_interrupt_latency_irq);

/* Start timer */

I10WR_ALTERA_AVALON_TIMER_CONTROL(base, ALTERA_AVALON_TIMER_CONTROL_ITO_MSK
| ALTERA_AVALON_TIMER_CONTROL_START_MSK);

y o
#endi

The first line of Example 30-2 detects whether the BSP implements the enhanced interrupt APL. If the
enhanced API is implemented, the timer_interrupt_latency_init() function calls the enhanced
function. If not, timer_interrupt_latency_init() reverts to the legacy interrupt API function.

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

https://documentation.altera.com/#/00075715-NT$NT00075110
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

alt_ic_isr_register() versus alt_irq_register()

30-29

For an explanation of how the Nios II Software Build Tools select which API to implement in a BSP, refer
to “Interrupt Service Routines” in the Exception Handling chapter of the Nios II Software Developer’s

Handbook.

Example 30-3 shows the function prototype for alt_ic_isr_register(), which registers an ISR in the
enhanced API. The interrupt controller identifier (for argument ic_id) and the interrupt port number
(for argument irq) are defined in system.h.

Example 30-3: Enhanced Function alt_ic_isr_register()

extern int alt_ic_isr_register(alt_u32 ic_id,

alt_u32 irq,
alt_isr_func isr,

void *isr_context,

void *flags);

For comparison, Example 30-4 shows the function prototype for alt_irqg_register(), which
registers an ISR in the legacy APL

Example 30-4: Legacy Function alt_irq_register()

extern int alt_irg_register (alt_u32 id,

void* context,

alt_isr_func handler);

The arguments passed into alt_ic_isr_register() are slightly different from those passed into
alt_irg_register(). The table below compares the arguments to the two functions.

Table 30-13: Arguments to alt_ic_isr_register() versus alt_irq_register()

alt_ic_isr_register() Argument alt_irq_register() Argument

alt_u32 ic_id

Unique interrupt controller ID
as defined in system.h.

alt_u32 irg

Interrupt request (IRQ)
number as defined in
system.h.

alt_u32 id

alt_isr_func isr

Interrupt service routine (ISR)
function pointer

handler

void* isr_context

Optional pointer to a
component-specific data
structure.

context

void* flags

Reserved. Other EIC
implementations might use
this argument.

None

There are other significant differences between the legacy interrupt API and the enhanced interrupt API.
Some of these differences impact the ISR body itself. Notably, the two APIs employ completely different
interrupt preemption models. The example code accompanying this document illustrates many of the

differences.

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-30 Example Designs 2016.06.17

For further information about the other functions in the HAL interrupt APIs, refer to the Exception
Handling and HAL API Reference chapters of the Nios II Software Developer’s Handbook.

Related Information

« Exception Handling
o HAL API Reference

Example Designs

This section provides a brief description of the example designs provided with this document to
demonstrate the usage of the VIC. Additionally, this section provides instructions for running the
software examples on the Cyclone V SoC development kit.

Related Information

VIC_collateral_cv.zip

Example Description

The example designs are provided in a file called VIC_collateral_cv.zip. VIC_collateral_cv.zip is
available on the Documentation: Nios II Processor page of the Altera website under Vectored Interrupt
Controller Design Files.

Table 30-14: Example Designs in VIC_collateral_cv.zip

VIC Basic VIC_Example A single VIC
VIC Daisy-Chain VIC_DaisyChain_Example Two daisy-chained VICs
VIC Table-Resident VIC_ISRnVectorTable VIC with ISR located in vector table
Example
I1C VIC_noVIC_Example IIC example, for comparison with the VIC
examples

The top-level folder in VIC_collateral_cv.zip, called VIC_collateral_cv, contains the following files:

« run_sw.sh—Shell script to run one, several or all of the examples
+ README.txt—Describes the .zip file contents

Altera Corporation Vectored Interrupt Controller Core

D Send Feedback

https://documentation.altera.com/#/00075715-NT$NT00075638
https://documentation.altera.com/#/00075715-NT$NT00075666
https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/ug/vic_collateral_CV.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Figure 30-10: VIC Basic Example

1y

clk
clk_reset
B0 cpu
clk
reset
clata_master
instruction_master
interrupt_contraller_in
celug_reset_request
clelug_mern_slave
custom_instruction_master
Bl jtag_uart
clk
reset
awvalon_jtag_slave
1=}
B onchip_memory
clkl
sl
resetl
B sysclk_timer
tlk
reset
s1
irg
B latency_timer
clk
reset
sl
ircy
E performance_counter_0
clk
reset
control_slawe
B8 vic 1
clk
reset
iry_input
C5r_a0cess
interrupt_controller_out

o
Clock Ourput

Reset Output

Mins |l Processor

Clock Input

Reset Input

Aoalon Mernory Mapped Master
Ayvalon Mernory Mapped Master
Ayralon Streaming Sink.

Reset Qutput

Asralon Mermory Mapped Slave
Custam Instruction Master
ITAG UART

Clock Input

Reset Input

Awalon Memory Mapped Slave
Interrupt Sender

On-Chip Memory (RAM or ROM)
Clock Input

Ayalon Memory Mapped Slave
Reset Input

Inerval Timer

Clock Input

Reset Input

Ayralon Mernory Mapped Slave
Interrupt Sender

Interval Tirmer

Clock Input

Reset Input

Aaralon Memory Mapped Slave
Interrupt Sender

Performance Counter Unit
Clock Input

Reset nput

Awalon Mermory Mapped Slave
Wettored Interrupt Controller
Clock Input

Reset Input

Interrupt Recefver

Avalon Mermory Mapped Slave
Awalon Strearming Source

Figure 30-11: VIC Daisy-Chain Example

clk

reset

avalon_jtag_slave

irg
B latency_timerl

clk

reset

s1

irg
B latency_timer2

clk.

reset

sl

iro
E performance_counter_0

clk

reset

conmtrol_slave
B0 vic 1

clk

reset

irg_input

Csr_access

interrupt_controller_in

interrupt _contraller_out
B0 vic 2

clk

reset

irg_input

fsr_access

interrupt_controller_out
=] @ opu

clk

reset

data_master

S — instruction_raster
interrupt_controller_in
— cebug_reset_reguest

debug_mem_slave
custarm_instruction_master

Clock Input

Reset Input

WAwalon Mermory Mapped Slave
Interrupt Sender

Interval Timer

Clock Input

Reset Input

walon Memory Mapped Slave
Interrupt Sender

Interval Timer

Clock Input

Reset Input

iwalon Memory Mapped Slave
Interrupt Sender

Ferformance Counter Lnit
Clock Input

Reset Input

Awalon Memory Mapped Slave
Wectored Interrupt Contraller
Clock Input

Reset Input

Interrupt Receiver

(Asalon Mernory Mapped Slave
\Awalon Streaming Sink,

\Awalon Streaming Source
Wectored Interrupt Contraller
Clock Input

Reset Input

Interrupt Receiver

(Awalon Mermory Mapped Slave
\Awalon Streaming Source

Mins Il Processor

Clock Input

Feset Input

\Awalon Strearming Sink,

Reset Qutput

iwalon Memory Mapped Slave
Custorm Instruction Master

Awalon Mermory kapped Master
Awalon Memory Mapped Master

clkin

clkin
[clk]
[clk]
[clk]
[cik]
[Clk]
[cik]

clkin
[clk]
[clk]
[clk]

clkin
[elk1]
[elk1]

clkin
clk]
[clk]
clk]

ckin
[clk]
[clk]
[clk]

clkin
Telk]
elk]

clkin
elk]
elk]
lelk]
elk]

dkin
[clk]
[clk]
[clk]

dkin
[clk]
[clk]
[clk]

cikin
[clk]
[clk]
[clk]

clkin
[clk]
[clk]

dkin
[clk]
[clk]
[clk]
[clk]
[clk]

dkin
[clk]
[clk]
[clk]
[clk]

cikin
[clk]
[clk]
[clk]
[clk]
[clk]
[clk]

Example Description

0x8800

0x9480

Ox4000

0x9440

0x9460

0x9400

0x9000

0x98al

0x9860

0x9880

0x9800

0x9000

0x9400

OxB800

R O

TRI O

IRQ O

SEhuuy

OxG487

Q7T

0xD45T

OxB47 T

Dw9d3T

0BT

0x98a7

OxOETT

OxOEST

09837

Ox93TT

0x97TT

OxETTT

30-31

TR 7—

TR 36—

IR 3—

The IIC design is the same as the VIC Basic design, with the VIC and the EIC interface replaced by the

IIC. The VIC Table-Resident design is identical to the VIC Basic design.

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-32 Example Usage 2016.06.17

In each example, the software uses timers in conjunction with performance counters to measure the
interrupt performance. Each example’s software calculates the performance and sends the results to
stdout.

VIC_collateral_cv.zip includes a script, run_sw.sh, to run one, several, or all of the example. run_sw.sh
downloads the SRAM Object File (.sof) and the Executable and Linkable Format File (.elf) for each
example, and executes the code on the Cyclone V SoC, for the examples that you specify on the command
line.

Note: run_sw.sh assumes that you have only one JTAG download cable connected to your host
computer. If you have multiple JTAG cables, you must modify run_sw.sh to specify the cable
connected to your Cyclone V SoC development kit.

Related Information

o« Documentation: Nios II Processor
o VIC_collateral_cv.zip

Example Usage

Initially, Altera recommends that you run each example design as distributed, to see the example’s
performance on your own hardware. Thereafter, you can modify any of the examples to investigate the
VIC’s performance options, or customize the code for you application.

Execute the following steps to run each example design:

1. Power up your Cyclone V SoC board.
2. Connect the USB cable.
3. Unzip the VIC_collateral_cv.zip file to a working directory, expanding folder names.

Note: The path name to your working directory must not contain any spaces.
4. In a Nios II Command Shell, change to the top-level directory, VIC_collateral_cv.
5. At the command prompt, type the following command:

-/run_sw.sh

The script shows a list of options.
6. Run run_sw.sh again, using a command-line option that specifies the example you would like to run,
or to run all of the examples. Example 30-5 shows a sample session.

The run_sw.sh script performs the following steps:

a. Parses the command line argument(s) to determine which example(s) to run
b. Downloads the .sof for the selected example

c. Downloads the .elf for the selected example

d. Starts nios2-terminal to capture the software’s output

Software Description

The software for the various example designs is very similar. For example, the difference between the
software for the VIC Basic example and the software for the IIC example is the printf() call that
generates the output to the terminal.

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

https://www.altera.com/products/processors/support.html
https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/ug/vic_collateral_CV.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Software Description 30-33

All of the software performs the following steps:

Configures the timer used for measurement purposes

Registers an interrupt service routine (ISR)

Sets a global variable to Oxfeedface

Starts the performance counter to measure the interrupt time
Waits for the ISR to set the global variable to Oxfacefeed

Stops the performance counter and computes the interrupt time

Sk P

The VIC Daisy-Chain example performs the measurement for both VICs connected in the daisy chain,
shown in Figure 30-11.

In all these design examples, the GCC compiler in Nios II SBT tool is set to optimization level 2. Also,
some settings are modified during BSP generation in order to reduce the code size. All these setting can be
found in the create-this-bsp script included in the design example. Note that the number of clock cycles
shows in these design examples will be differ from this document if the setting is different.

For details about how the VIC Table-Resident example code works, refer to “Positioning the ISR in the
Vector Table”. For details about performance counter usage in the example software, refer to “Latency
Measurement with the Performance Counter”.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-34 Software Description 2016.06.17

Example 30-5: VIC Example

¢ ./run_suw.sh —UIC_Example

Running software...

Running for UIC_Example
soeygdrivescsalterasllC_Examplessof tware_examplessapp Acygdriverscsaltera
Searching for S0F file:
in ../
DIC_Example.sof

Infu: JmE-3aE~3eE 30 -3aE-JE e -3eE e -JaE-Juf—3aE-Jaf —eF-Juf-3eF-Juf—3e—eE-Jef-JaE-Jaf—ef-JefJeF-Jaf-Jef-Juf—Jef—JeE-Jf-JaE-Jnf e -Jaf—eE-Juf-Jafef—Jef-eF-Juf—Jef-Jnf e -JaE-JoF-Juf-Jef—eF-Jef—JeE-Juf—Jef—3nf—ef-JaE-Jaf—3af-JefJef-Jnf-JeE-Jef-Jef-eE-E-
Info: Running Quartus II 64-Bit Programmer
Info: Command: guartus_pgm ——no_banner —mode=jtag —o p:C:ralterasUIC_Example-UI
C_Example .sof B2
Info €213845>: Using programming cable "USB-BlasterII [USB-11"
Info <213811>: Using programming file C:ralterasUIC_ExamplesUIC_Example.sof with
checkzsum Bx@174989D for device SCEXFC6D6FI10E2
(289868 : Started Programmer operation at Wed Mar 82 B8:52:28 2016
(2098016>: Configuring device index 2
(20981°7>: Device 2 containz JIAG ID code BxB2DAZADD
(2898807 >: Configuration succeeded — 1 device<s? configured
(209811>: Successfully performed operationisl
(209861 >: Ended Programmer operation at Wed Mar B2 A8:52:24 2@16
Info: Quartus II 64-Bit Programmer was succeszful. B errors. B warnings
Info: Peak virtual memory: 265 megahytes
Info: Processzing ended: Wed Mar 82 B8:52:24 2016
Info: Elapsed time: B@:80:86
Info: Total CPU time ¢<on all processors>: BE:BH:B82
Using cable "USB-BlasterII [USB-11". device 2. instance BxB88
Pauzing target processor: OK
Initializing CPU cache <if present?

Starting processor at addresz BxBAEE40208

nios2—terminal: connected to hardware target using JTAG UART on cahle
nioz2-terminal: "USB-BlastewrII [USB-11". device 2, instance @
nioz2—-terminal: (lUse the IDE stop button or Ctrl-C to terminatel
Starting UIC Example roundtrip performance test.

Interrupt Time: £3 clocks.

Sending EOT to force an exit.

nios2-terminal: exiting due to D on remote
soygdrivescsaltera

Related Information

o Positioning the ISR in Vector Table on page 30-35
» Latency Measurement with the Performance Counter on page 30-36

Altera Corporation Vectored Interrupt Controller Core

(;:] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 L .
2016.06.17 Positioning the ISR in Vector Table 30-35

Positioning the ISR in Vector Table

If have a critical ISR of small size, you can achieve the best performance by positioning the ISR code
directly in the vector table. In this way, you eliminate the overhead of branching from the vector table
through the HAL funnel to your ISR.This section describes how to modify the VIC Basic example
software to create the VIC Table-Resident example. Use this example to ensure that you understand the
steps. Then you can make the equivalent changes in your custom code.

Positioning an ISR in a vector table is an advanced and error-prone technique, not directly supported by
the HAL. You must exercise great caution to ensure that the ISR code fits in the vector table entry. If your
ISR overflows the vector table entry, it corrupts other entries in the vector table, and your entire interrupt
handling system.

When locate your ISR in the vector table, it does not need to be registered. Do not call
alt_ic_isr_register(), because it overwrites the contents of the vector table.

When the ISR is in the vector table, the HAL does not provide funnel code. Therefore, the ISR code must
perform any context-switching actions normally handled by the funnel. Funnel context switching can
include some or all of the following actions:

« Saving and restoring registers

« Managing preemption

« Managing the stack pointer

To create the fastest possible ISR, minimize or eliminate the context-switching actions your ISR must
perform by conforming to the following guidelines:

o Write the ISR in assembly language

+ Assign a shadow register set for the ISR’s use

« Ensure that the ISR cannot be preempted by another ISR using the same register set. By default,
preemption within a register set is disabled on the Nios II processor. You can also ensure this
condition by giving the ISR exclusive access to its register set.

The VIC Table-Resident example requires modifying a BSP-generated file, altera_vicl_vector_tbl.S. If
you regenerate the BSP after making these modifications, the Nios II Software Build Tools regenerate
altera_vicl_vector_tbl.S, and your changes are overwritten.

Related Information
Software Description on page 30-32

Increase the Vector Table Entry Size

To insert the ISR in the vector table, you must increase the size of the vector entries so that your entire ISR
fits in a vector table entry. Use the altera_vic_driver.<vic_instance>.vec_size BSP setting to adjust
the vector table entry size. On the Nios II Software Build Tools command line, you can manipulate this
setting with the --set command-line option. You can also modify this setting in the Nios II BSP Editor.

In the VIC Table-Resident example, <vic_instance> is VIC1 and <size> is set to 256 bytes.

Do Not Register the ISR

Remove the call to alt_ic_isr_register() for the interrupt that you place in the vector table. Replace it
with an alt_ic_irg_enable() call. You must not call alt_ic_isr_register(), because it overwrites the
contents of the vector table, destroying the body of your ISR.

Vectored Interrupt Controller Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

30-36 Insert ISR in Vector Table 2016.06.17

Insert ISR in Vector Table

In the VIC Table-Resident example included with this document, the ISR code is in a file called vector.h
in the BSP folder.

To insert this code in the vector table, execute the following steps:

1. Generate the BSP by running the create-this-bsp script.
2. Modify altera_vicl_vector_tbl.S as shown in the example below.

Example 30-6: Modifications to altera_vic1_vector_tbl.S

#include "altera_vic_funnel.h"

#include "vector.h" /* ADD THIS LINE MANUALLY */
.section .text
.align 2

.globl VIC1_VECTOR TABLE
VIC1_VECTOR_TABLE:
MY ISR 256 /* THIS LINE REPLACES THE FIRST VECTOR
TABLE ENTRY */
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256
ALT_SHADOW_NON_PREEMPTIVE_INTERRUPT 256

After completion of these steps, build the software, run it, and observe the reported interrupt time. This
example is about 18 clock cycles faster than the unmodified VIC Basic example.

Some variation is likely for reasons discussed in “Real-Time Latency Concerns”.

Related Information
Real Time Latency Concerns on page 30-37

Latency Measurement with the Performance Counter

The Altera Complete Design Suite provides tools that enable you to make fast, accurate performance
measurements. All examples included with this document use the Performance Counter component to
measure interrupt latency.

The examples execute the following steps to measure the total time spent to service an interrupt:

Initialize a global variable, interrupt_watch_value, to a known value, Oxfeedface.

Set up a timer interrupt, registering an ISR that sets interrupt_watch_value to Oxfacefeed.
Start the timer.

Wait in a while() loop until interrupt_watch_value becomes Oxfacefeed.

Immediately after exiting the while() loop, stop the performance counter, compute clock cycles and
display the calculated value on stdout.

AN ol A

You can use similar methods to determine the real-time interrupt latencies in your system.

Related Information

« Software Description on page 30-32
+ Real Time Latency Concerns on page 30-37

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Advanced Topics

This section presents several topics that are useful for advanced interrupt handling.

Real Time Latency Concerns

Advanced Topics 30-37

This section presents an overview of interrupt latency, the elements that combine to determine interrupt
latency, and methods for measuring it. The following elements comprise interrupt latency:

Pipeline latency

Cause latency

Selection latency

Funnel latency
Compiler-related latency

Figure 30-12: The Elements of Interrupt Latency

Interrupt Request

Time

v

Background

[Background
1SR Code

Cause,

Selection
&
o Funnel
Pipeline Latency Latency
< > > e
Interrupt Recover

Interrupt Latency

(Back-end Funnel

J

This section summarizes each element of latency and describes how to measure latency. The accompa-
nying example designs use the performance counter core to capture all of the timing measurements.
Performance counter core usage is described in “Latency Measurement with the Performance Counter”.

Related Information

Insert ISR in Vector Table on page 30-36
Latency Measurement with the Performance Counter on page 30-36

Vectored Interrupt Controller Core

C] Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
30-38 Pipeline Latency 2016.06.17

Pipeline Latency

Pipeline latency is defined as the number of clock cycles between an interrupt signal being asserted and
the execution of the first instruction at the exception vector. It can vary widely, depending on the type of
memory the processor is executing from and the impact of other master ports in your hardware. Theoreti-
cally, this time could be infinite if an ill-behaved master port blocks the processor from accessing
memory, freezing the processor.

Cause Latency

Cause latency is the time required for the processor to identify an exception as a hardware interrupt. With
an EIC, such as the VIC, the cause latency is zero because each hardware interrupt has a dedicated
interrupt vector address, separate from the software exception vector address.

Selection Latency

Selection latency is the time required for the system to transfer control to the correct interrupt vector,
depending on which interrupt is triggered. The selection latency with the VIC component depends on the
number of interrupts that it services. The table below outlines selection latency on a single VIC as a
function of the number of interrupts.

Table 30-15: The Components of VIC Latency

Total Number of Interrupt Request | Priority Processing | Vector Generation Total Interrupt Latency
Interrupts Clock Delay Clock Delay Clock Delay (clocks)
(clocks) (clocks) (clocks)
1 2 0 1 3
2—4 2 1 1 4
5—16 2 2 1 5
17—32 2 3 1 6

Funnel Latency

Funnel latency is the time required for the interrupt funnel to switch context. Funnel latency can include
saving and restoring registers, managing preemption, and managing the stack pointer. Funnel latency
depends on the following factors:

o Whether a separate interrupt stack is used

« The number of clock cycles required for load and store instructions

o Whether the interrupt requires switching to a different register set

o Whether the interrupt is preempting another interrupt within the same register set
o Whether preemption within the register set is allowed

Preemption within the register set requires special attention. The HAL VIC driver provides special funnel
code if an interrupt is allowed to preempt another interrupt assigned to the same register set. In this case,
the funnel incurs additional overhead to save and restore the register contents. When creating the BSP,
you can control preemption within the register set by using the VIC driver’s
altera_vic_driver_enable_preemption_rs_<n> setting.

Note: With tightly-coupled memory, the Nios II processor can execute a load or store instruction in 1
clock cycle. With onchip memory, not tightly-coupled, the processor requires two clock cycles.

Altera Corporation Vectored Interrupt Controller Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Table 30-16: Single Stack HAL latency

Funnel Type Clock Cycles Required for Load or Store

Funnel Latency

30-39

1 2
Shadow register set, 10 13
preemption within the
register set disabled
42 64

Shadow register set,
preemption within the
register set enabled

Same register set
(sstatus.SRS=0)

Same register set (sstatus.SRS=0)

26

Different register set
(sstatus.SRS=1)

32

Different register set (sstatus.SRS=1)

Table 30-17: Separate Interrupt Stack HAL Latency

Funnel Type Clock Cycles Required for Load or Store

1

2

Shadow register set,
preemption within the
register set disabled

11

Not preempting another
interrupt (sstatus. I1H=0)

14

Not preempting another interrupt

(sstatus. 1H=0)

12

Preempting another interrupt
(sstatus.1H=1)

15

Preempting another interrupt
(sstatus.H=1)

Shadow register set,
preemption within the
register set enabled

42

Same register set
(sstatus.SRS=0)

64

Same register set (sstatus.SRS=0)

27

o Different register set
(sstatus.SRS=1)

o Not preempting another
interrupt (sstatus. 1H=0)

33

o Different register set (sstatus.SRS=1)
« Not preempting another interrupt

(sstatus. 1H=0)

28

« Different register set
(sstatus.SRS=1)

o Preempting another
interrupt (sstatus. IH=1)

34

« Different register set (sstatus.SRS=1)
« Preempting another interrupt

(sstatus.IH=1)

Vectored Interrupt Controller Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
30-40 Compiler-Related Latency 2016.06.17

In the tables above, notice that the lowest latencies occur under the following conditions:

« A different register set—Shadow register set switch; the ISR runs in a different register set from the
interrupted task, eliminating any need to save or restore registers.
o Preemption (nesting) within the register set disabled.

Conversely, the highest latencies occur under the following conditions:

o The same register set—No shadow register set switch; the ISR runs in the same register set as the
interrupted task, requiring the funnel code to save and restore registers.

o Preemption within the register set enabled.

Of these two important factors, preemption makes the largest difference in latencies. With preemption
disabled, much lower latencies occur regardless of other factors.

Compiler-Related Latency

The GNU C compiler creates a prologue and epilogue for many C functions, including ISRs. The prologue
and epilogue are code sequences that take care of housekeeping tasks, such as saving and restoring context
for the C runtime environment. The time required for the prologue and epilogue is called compiler-
related latency.

The C compiler generates a prologue and epilogue as needed. If compiler optimization is enabled, and the
routine is compact, with few local variables, the prologue and epilogue are usually omitted. You can
determine whether a prologue and epilogue are generated by examining the function’s assembly code.

Compiler latency normally has only a minor impact on overall interrupt servicing performance. If you are
concerned about compiler latency, you have two options:

 Enable compiler optimizations, and simplify your ISR, minimizing local variables.
« Write your ISR in assembly language.

Software Interrupt

Software can trigger any VIC interrupt by writing to the appropriate VIC control and status register
(CSR). Software can trigger the interrupt connected to any hardware interrupt source, as well as interrupts
that are not connected to hardware (software-only interrupts).

Triggering an interrupt from software is useful for debugging. Software can control exactly when an
interrupt is triggered, and measure the system’s interrupt response.

You can use a software-only interrupt to reprioritize an interrupt. An ISR that responds to a high-priority
hardware interrupt can perform the minimum processing required by the hardware, and then trigger a
software-only interrupt at a lower priority level to complete the interrupt processing.

The following functions are available for managing software interrupts:

e alt vic_sw_interrupt_set()
e alt vic_sw_interrupt_clear()
e alt vic_sw_interrupt_status()

The implementations of these functions are in bsp/hal/drivers/src/altera_vic_sw_intr.c after you
generate the BSP.

Note: You must define a value for the interrupt number in SOFT_IRQ.

Altera Corporation Vectored Interrupt Controller Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Document Revision History 30-41

Example 30-7: Registering a Software Interrupt

alt_ic_isr_register(
VICL1_INTERRUPT_CONTROLLER_ID,
SOFT_IRQ,
soft_interrupt_latency_irq,
NULL, NULL)

Example 30-8: Registering a Timer Interrupt (for Comparison)

alt_ic_isr_register(
LATENCY_TIMER_IRQ_INTERRUPT_CONTROLLER_ID,
LATENCY_TIMER_IRQ,
timer_interrupt_latency irq,
LATENCY_TIMER_BASE,
NULL);

The following code generates a software interrupt:

alt_vic_sw_interrupt_set(VIC1_INTERRUPT_CONTROLLER_ID, SOFT_IRQ);

Document Revision History

Table 30-18: Revision History

I I S

May 2016 2016.05.03 Sections Added:

o Implementing VIC in Qsys
« Example Designs
o Advanced Topics

Novemeber 2015 |2015.11.06 Updated:

o Table 30-3
o Table 30-5
o Table 30-10

December 2013 |v13.1.0 Updated the INT_ENABLE register description.

December 2010 | 10.1.0 Added a note to to state that the VIC does not support the runtime
stack checking feature in BSP setting.

Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

July 2010 v10.0.0 No change from previous release.
November 2009 |91 Initial release.
Vectored Interrupt Controller Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Vectored%20Interrupt%20Controller%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System ID Core 3 1

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The system ID core with Avalon® interface is a simple read-only device that provides Qsys systems with a
unique identifier. Nios® II processor systems use the system ID core to verify that an executable program
was compiled targeting the actual hardware image configured in the target FPGA. If the expected ID in
the executable does not match the system ID core in the FPGA, it is possible that the software will not
execute correctly.

Functional Description

The system ID core provides a read-only Avalon Memory-Mapped (Avalon-MM) slave interface. This
interface has two 32-bit registers, as shown in the table below. The value of each register is determined at
system generation time, and always returns a constant value.

Table 31-1: System ID Core Register Map

I A I S,

A unique 32-bit value that is based on the contents of the
Qsys system. The id is similar to a check-sum value; Qsys
systems with different components, different configura-
tion options, or both, produce different id values.

1 timestamp R A unique 32-bit value that is based on the system
generation time. The value is equivalent to the number of
seconds after Jan. 1, 1970.

There are two basic ways to use the system ID core:

« Verify the system ID before downloading new software to a system. This method is used by software
development tools, such as the Nios II integrated development environment (IDE). There is little point
in downloading a program to a target hardware system, if the program is compiled for different
hardware. Therefore, the Nios II IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or debug.

o Check system ID after reset. If a program is running on hardware other than the expected Qsys system,
the program may fail to function altogether. If the program does not crash, it can behave erroneously
in subtle ways that are difficult to debug. To protect against this case, a program can compare the
expected system ID against the system ID core, and report an error if they do not match.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :OO? .tzoo(si
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20System%20ID%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

UG-01085

31-2 Configuration 2016.06.17

Configuration

The id and timestamp register values are determined at system generation time based on the
configuration of the Qsys system and the current time. You can add only one system ID core to an Qsys
system, and its name is always sysid.

After system generation, you can examine the values stored in the id and timestamp registers by opening
the MegaWizard interface for the System ID core.

Since a unique timestamp value is added to the System ID HDL file each time you generate the Qsys
system, the Quartus Prime software recompiles the entire system if you have added the system as a design
partition.

Software Programming Model

This section describes the software programming model for the system ID core. For Nios II processor
users, Altera provides the HAL system library header file that defines the System ID core registers.

The System ID core comes with the following software files. These files provide low-level access to the
hardware. Application developers should not modify these files.

« alt_avalon_sysid_regs.h—Defines the interface to the hardware registers.

« alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files defining the hardware access
functions.

Altera provides one access routine, alt_avalon_sysid_test(), that returns a value indicating
whether the system ID expected by software matches the system ID core.
alt_avalon_sysid_test()
Prototype: alt_32 alt_avalon_sysid_test(void)
Thread-safe: | No.

Available Yes.
from ISR:

Include: <altera_avalon_sysid.h>

Description: | Returns 0 if the values stored in the hardware registers match the values expected by
software. Returns 1 if the hardware timestamp is greater than the software timestamp.
Returns -1 if the software timestamp is greater than the hardware timestamp.

Document Revision History

Table 31-2: Document Revision History

e e | s

July 2014 2014.07.24 Removed mention of SOPC Builder, updated to Qsys

» «

December 2010 | 10.1.0 Removed the “Device Support”, “Instantiating the Core in SOPC
Builder”, and “Referenced Documents” sections.

Altera Corporation System ID Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20ID%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 31-3

I I S

July 2010

v10.0.0 No change from previous release.
November 2009 |91 Added description to the Instantiating the Core in SOPC Builder
section.
March 2009 v9.0.0 No change from previous release.
November 2008 | g 10 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 No change from previous release.

System ID Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20ID%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Performance Counter Core 3 2

2016.06.17

UG-01085 X subscribe C] Send Feedback

Core Overview

The performance counter core with Avalon® interface enables relatively unobtrusive, real-time profiling
of software programs. With the performance counter, you can accurately measure execution time taken
by multiple sections of code. You need only add a single instruction at the beginning and end of each
section to be measured.

The main benefit of using the performance counter core is the accuracy of the profiling results. Alterna-
tives include the following approaches:

« GNU profiler, gprof—gprof provides broad low-precision timing information about the entire
software system. It uses a substantial amount of RAM, and degrades the real-time performance. For
many embedded applications, gprof distorts real-time behavior too much to be useful.

« Interval timer peripheral —The interval timer is less intrusive than gprof. It can provide good results
for narrowly targeted sections of code.

The performance counter core is unobtrusive, requiring only a single instruction to start and stop
profiling, and no RAM. It is appropriate for high-precision measurements of narrowly targeted
sections of code.

For further discussion of all three profiling methods, refer to AN 391: Profiling Nios II Systems.

. . . . ®
The core is designed for use in Avalon-based processor systems, such as a Nios II processor system.
Altera device drivers enable the Nios II processor to use the performance counters.

Functional Description

The performance counter core is a set of counters which track clock cycles, timing multiple sections of
your software. You can start and stop these counters in your software, individually or as a group. You can
read cycle counts from hardware registers.

The core contains two counters for every section:

o Time: A 64-bit clock cycle counter.
« Events: A 32-bit event counter.

Section Counters

Each 64-bit time counter records the aggregate number of clock cycles spent in a section of code. The 32-
bit event counter records the number of times the section executes.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance 1SO
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzooz
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Performance%20Counter%20Core&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

32-2 Global Counter

The performance counter core can have up to seven section counters.

Global Counter
The global counter controls all section counters. The section counters are enabled only when the global

counter is running.

UG-01085
2016.06.17

The 64-bit global clock cycle counter tracks the aggregate time for which the counters were enabled. The
32-bit global event counter tracks the number of global events, that is, the number of times the perform-
ance counter core has been enabled.

Register Map

The performance counter core has an Avalon Memory-Mapped (Avalon-MM) slave interface that
provides access to memory-mapped registers. Reading from the registers retrieves the current times and

event counts. Writing to the registers starts, stops, and resets the counters.

Table 32-1: Performance Counter Core Register Map

Bit Description

0 T[0T} global clock cycle counter [31: 0] 0=STOP
1 = RESET

1 TLO1y; global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[11 section 1 clock cycle counter [31:0] (1) 1=STOP

5 T[] section 1 clock cycle counter [63:32] (1) 0 =START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[21}1 section 2 clock cycle counter [31:0] (1) 1=STOP

9 T2 section 2 clock cycle counter [63:32] (1) 0 =START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

4n+0 TN, section n clock cycle counter [31:0] (1) 1=STOP

4n +1 TN section n clock cycle counter [63:32] (1) 0 =START

4n + 2 Ev[n] section n event counter (1) (1)

Altera Corporation

Performance Counter Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 323
2016.06.17 System Reset A

Bit Description

I U T BN
[e |(1>

4n+ 3 —
Table 32-1:

1. Reserved. Read values are undefined. When writing, set reserved bits to zero.

System Reset

After a system reset, the performance counter core is stopped and disabled, and all counters are set to
Zero.

Configuration

The following sections list the available options in the MegaWizard " interface.

Define Counters

Choose the number of section counters you want to generate by selecting from the Number of
simultaneously-measured sections list. The performance counter core may have up to seven sections. If
you require more that seven sections, you can instantiate multiple performance counter cores.

Multiple Clock Domain Considerations

If your Qsys system uses multiple clocks, place the performance counter core in the same clock domain as
the CPU. Otherwise, it is not possible to convert cycle counts to seconds correctly.

Hardware Simulation Considerations

You can use this core in simulation with no special considerations.

Software Programming Model

The following sections describe the software programming model for the performance counter core.

Software Files

Altera provides the following software files for Nios II systems. These files define the low-level access to
the hardware and provide control and reporting functions. Do not modify these files.

« altera_avalon_performance_counter.h, altera_avalon_performance_counter.c—The header and
source code for the functions and macros needed to control the performance counter core and retrieve
raw results.

+ perf_print_formatted_report.c—The source code for simple profile reporting.

Performance Counter Core Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

324 2016.06.17

Using the Performance Counter

Using the Performance Counter

In a Nios IT system, you can control the performance counter core with a set of highly efficient C macros,
and extract the results with C functions.

API Summary

The Nios II application program interface (API) for the performance counter core consists of functions,
macros and constants.

Table 32-2: Performance Counter Macros and Functions

I

PERF_RESETQ) Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURINGQ) Stops the global counter and disables section counters.

PERF_BEGINQ Starts timing a code section.

PERF_ENDQ) Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.

For a complete description of each macro and function, see the Performance counter API section.

Hardware Constants

You can get the performance counter hardware parameters from constants defined in system.h. The
constant names are based on the performance counter instance name, specified on the System Contents
tab in Qsys.

Table 32-3: Performance Counter Constants

PERFORMANCE_COUNTER_BASE

Base address of core

PERFORMANCE_COUNTER_SPAN

Number of hardware registers

PERFORMANCE_COUNTER_HOW_
MANY_SECTIONS

Number of section counters

Table 32-3 :

1. Example based on instance name performance_counter.

Startup

Before using the performance counter core, invoke PERF_RESET to stop, disable and zero all counters.

Altera Corporation

Performance Counter Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17 Using the Performance Counter 32-5

Global Counter Usage

Use the global counter to enable and disable the entire performance counter core. For example, you might
choose to leave profiling disabled until your software has completed its initialization.

Section Counter Usage

To measure a section in your code, surround it with the macros PERF_BEGIN() and PERF_END(). These
macros consist of a single write to the performance counter core.

You can simultaneously measure as many code sections as you like, up to the number specified in Qsys.
See the Define Counters section for details. You can start and stop counters individually, or as a group.

Typically, you assign one counter to each section of code you intend to profile. However, in some
situations you may wish to group several sections of code in a single section counter. As an example, to
measure general interrupt overhead, you can measure all interrupt service routines (ISRs) with one
counter.

To avoid confusion, assign a mnemonic symbol for each section number.

Viewing Counter Values

Library routines allow you to retrieve and analyze the results. Use perf_print_formatted_report() to
list the results to stdout, as shown below.

Table 32-4: Example 1:

perf_print_formatted_report(
(void *)PERFORMANCE_COUNTER_BASE, // Peripheral®s HW base address

alt_get_cpu_freq(Q, // defined in "'system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections

"pc_overhead",

"ts_overhead™);

The example below creates a table similar to this result.

Performance Counter Core Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
32-6 Interrupt Behavior 2016.06.17

Table 32-5: Example 2:

—--Performance Counter Report--

Total Time: 2.07711 seconds (103855534 clock-cycles)
o oo —— Fom——_— o Fom——_— +
| Section | % | Time (sec)|] Time (clocks) |Occurrences]
o oo —— Fom——_— o Fom——_— +
| 1st checksum_test]| 50 | 1.03800 | 51899750 | 1]
o oo —— Fom——_— o Fom——_— +
| pc_overhead |1.73e-05] 0.00000 | 18 | 1]
o oo —— Fom——_— o Fom——_— +
| ts_overhead |4.24e-05] 0.00000 | 44 | 1]
o oo —— Fom——_— o Fom——_— +
For full documentation of perf_print_formatted_report(), see the Performance and Counter API
section.

Interrupt Behavior

The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance results, in an interrupt service
routine (ISR). Do not call the perf_print_formatted_report() function from an ISR.

If an interrupt occurs during the measurement of a section of code, the time taken by the CPU to process
the interrupt and return to the section is added to the measurement time. The same applies to context
switches in a multithreaded environment. Your software must take appropriate measures to avoid or
handle these situations.

Performance Counter API
This section describes the application programming interface (API) for the performance counter core.

For Nios II processor users, Altera provides routines to access the performance counter core hardware.
These functions are specific to the performance counter core and directly manipulate low level hardware.
The performance counter core cannot be accessed via the HAL API or the ANSI C standard library.

PERF_RESET()

Prototype: PERF_RESET(p)
Thread-safe: | Yes.
Available Yes.
from ISR:
Include: <altera_avalon_performance_counter.h>
Parameters: | p—performance counter core base address.
Altera Corporation Performance Counter Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

PERF_START_MEASURING()

Returns:

Description:

Macro PERF_RESET() stops and disables all counters, resetting them to 0.

PERF_START_MEASURING()

Prototype: PERF_START_MEASURING(p)

Thread-safe: | Yes.

Available Yes.

from ISR:

Include: <altera_avalon_performance_counter.h>

Parameters: | p—performance counter core base address.

Returns: —

Description: | Macro PERF_START_MEASURING() starts the global counter, enabling the

performance counter core. The behavior of individual section counters is
controlled by PERF_BEGIN() and PERF_END(). PERF_START_MEASURING()
defines the start of a global event, and increments the global event counter. This
macro is a single write to the performance counter core.

PERF_STOP_MEASURING()

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: | Yes.

Available Yes.

from ISR:

Include: <altera_avalon_performance_counter.h>

Parameters: | p—performance counter core base address.

Returns: —

Description: | Macro PERF_STOP_MEASURING() stops the global counter, disabling the perform-

ance counter core. This macro is a single write to the performance counter core.

PERF_BEGIN()

Prototype: PERF_BEGIN(p,n)

Thread-safe: | Yes.

Available Yes.

from ISR:

Include: <altera_avalon_performance_counter.h>

Performance Counter Core

C] Send Feedback

Altera Corporation

32-7

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

32-8 PERF_END()

UG-01085

2016.06.17

Parameters: | p—performance counter core base address.
n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: | Macro PERF_BEGIN() starts the timer for a code section, defining the beginning
of a section event, and incrementing the section event counter. If you
subsequently use PERF_STOP_MEASURING() and PERF_START_MEASURING() to
disable and re-enable the core, the section counter will resume. This macro is a
single write to the performance counter core.

PERF_END()

Prototype: PERF_END(p,n)

Thread-safe: | Yes.

Available Yes.

from ISR:

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.
n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not

run, regardless whether the core is enabled or not. This macro is a single write to
the performance counter core.

perf_print_formatted_report()

Prototype:

int perf_print_formatted_report (
void* perf_base,
alt_u32 clock_freqg_hertz,
int num_sections,
char* section_name_1,

char* section_name_n)

Thread-safe: | No.

Available No.

from ISR:

Include: <altera_avalon_performance_counter.h>

Altera Corporation

Performance Counter Core

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

perf_get_total_time()

Parameters:

perf_base—Performance counter core base address.
clock_freq_hertz—Clock frequency.

num_sections—The number of section counters to display. This must not
exceed <instance_name> HOW_MANY_SECTIONS.

section_name_1 ... section_name_n—The section names to display. The
number of section names varies depending on the number of sections to display.

Returns:

0

Description:

Function perf_print_formatted_report() reads the profiling results from the
performance counter core, and prints a formatted summary table.

This function disables all counters. However, for predictable results in a multi-
threaded or interrupt environment, invoke PERF_STOP_MEASURING() when you
reach the end of the code to be measured, rather than relying on perf_print_
formatted_report().

perf_get_total_time()

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)
Thread-safe: | No.

Available Yes.

from ISR:

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core.

Returns: Aggregate global time in clock cycles.

Description: | Function perf_get_total_time() reads the raw global time. This is the

aggregate time, in clock cycles, that the performance counter core has been
enabled. This function has the side effect of stopping the counters.

perf_get_section_time()

Prototype:

alt_u64 perf_get_section_time

(void* hw_base_address, int which_section)

Thread-safe:

No.

Available from
ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.
which_section—counter section number.

Returns: Aggregate section time in clock cycles.

Performance Counter Core

C] Send Feedback

Altera Corporation

32-9

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

32-10

perf_get_num_starts()

UG-01085
2016.06.17

Description:

Function perf_get_section_time() reads the raw time for a given section.
This is the time, in clock cycles, that the section has been running. This function
has the side effect of stopping the counters.

perf_get_num

Prototype:

_starts()

alt_u32 perf_get_num_starts

(void* hw_base_address, int which_section)

Thread-safe:

Yes.

Available from
ISR:

Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.
which_section—counter section number.

Returns: Number of counter events.

Description: | Function perf_get_num_starts() retrieves the number of counter events (or

times a counter has been started). If which_section = 0, it retrieves the number
of global events (times the performance counter core has been enabled). This
function does not stop the counters.

alt_get_cpu_freq()

Prototype: alt_u32 alt_get cpu_freqQ
Thread-safe: | Yes.
Available from | Yes.

ISR:

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz.

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.

Document Revision History

Table 32-6: Document Revision History

I I S

June 2015

2015.06.12 Updated "Performance Counter Core Register Map" table.

July 2014

2014.07.24 Removed mention of SOPC Builder, updated to Qsys

Altera Corporation

Performance Counter Core

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
2016.06.17

Document Revision History 32-11

I I S

Removed the “Device Support”, “Instantiating the Core in SOPC

December 2010

v10.1.0
Builder”, and “Referenced Documents” sections.
July 2010 v10.0.0 Updated perf_print_formatted_report() to remove the restriction
on using small C library.
November 2009 |91 No change from previous release.
March 2009 v9.0.0 No change from previous release.
November 2008 | g 10 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 v8.0.0 Updated the parameter description of the function perf_print_

formatted_report().

Performance Counter Core

D Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Performance%20Counter%20Core%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Streaming Test Pattern Generator and
Checker Cores 3 3

2016.06.17

UG-01085 @ Subscribe C] Send Feedback

Avalon Streaming Test Pattern Generator and Checker Cores

Core Overview

The data generation and monitoring solution for Avalon® Streaming (Avalon-ST) consists of two
components: a test pattern generator core that generates packetized or non-packetized data and sends it
out on an Avalon-ST data interface, and a test pattern checker core that receives the same data and checks
it for correctness.

The test pattern generator core can insert different error conditions, and the test pattern checker reports
these error conditions to the control interface, each via an Avalon Memory-Mapped (Avalon-MM) slave.

Both cores are SOPC Builder-ready and integrate easily into any SOPC Builder-generated system.

Resource Utilization and Performance

Resource utilization and performance for the test pattern generator and checker cores depend on the data
width, number of channels, and whether the streaming data uses the optional packet protocol.

Table 33-1: Test Pattern Generator Estimated Resource Utilization and Performance

Datawi Stratix” Il and Stratix Il GX Cyclone II
dth
No. of | (No. of fMAX ALM | Memor | fyax Logic | Memor fMAX Logic
: y (bits) Cells | y (bits) Cells
Channe | 8-bit (MHz) | Count (MHz) (MHz)
Is Symbol
s Per
Beat)
1 4 Yes 560
1 4 No 293 222 496 207 572 496 245 561 496
32 |4 Yes 276 270 912 210 683 912 197 707 912
32 |4 No 323 227 848 234 585 848 220 630 848
1 16 Yes 298 361 560 228 867 560 245 896 560
1 16 No 340 330 496 230 810 496 228 845 496

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance IS0
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any :00.1 'tzoog
egistere

products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive, San Jose, CA 95134 now part of Intel

https://www.altera.com/servlets/subscriptions/alert?id=UG-01085
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-01085%202016.06.17)%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

33-2 Test Pattern Generator

Stratix” Il and Stratix Il GX

M Memor

Cyclone II

UG-01085
2016.06.17

(MHz) | Count

32 |16 Yes

912

fMAX LOgIC
(MHz2) Cells

912

fMAX Logic Memory
(MHz2) Cells (bits)
224 956 912

32 |16 No 269

409

848

219

842

848

204

912

848

Table 33-2: Test Pattern Checker Estimated Resource Utilization and Performance

Datawi Stratix |l and Stratix Il GX

dth
No. of | (No.of | Packet fMAX Hl
Channe| 8-bit | Suppor| (MHz) | Count
Is Symbol

s Per

Beat)

M Memor

Cyclone II

fMAX LOgIC
(MHz2) Cells

fMAX Logic Memory
(MHz2) Cells (bits)
174 744 96

4
1 4 No 371 187 32 227 628 0 229 663 32
32 |4 Yes 185 396 3616 111 875 3854 105 795 3616
32 |4 No 221 363 3520 133 686 3520 133 660 3520
1 16 Yes 253 462 96 185 1433 0 166 1323 96
1 16 No 277 306 32 218 1044 0 192 1004 32
32 |16 Yes 182 582 3616 111 1367 3584 110 1298 3616
32 |16 No 218 473 3520 129 1143 3520 126 1074 3520

Test Pattern Generator

This section describes the hardware structure and functionality of the test pattern generator core.

Functional Description

The test pattern generator core accepts commands to generate data via an Avalon-MM command

interface, and drives the generated data to an Avalon-ST data interface. You can parameterize most
aspects of the Avalon-ST data interface such as the number of error bits and data signal width, thus
allowing you to test components with different interfaces.

Altera Corporation

Avalon Streaming Test Pattern Generator and Checker Cores

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

2016.06.17 Configuration 33-3

Test Pattern Generator Core Block Diagram

control & status

Avalon-MM
Slave Port

TEST PATTERN
GENERATOR

data_out

command >

2

Slave Port
22In0S
1S-uojeny

Avalon-MM

The data pattern is determined by the following equation:
Symbol Value = Symbol Position in Packet XOR Data Error Mask. Non-packetized data is one long stream
with no beginning or end.

The test pattern generator core has a throttle register that is set via the Avalon-MM control interface. The
value of the throttle register is used in conjunction with a pseudo-random number generator to throttle
the data generation rate.

Command Interface

The command interface is a 32-bit Avalon-MM write slave that accepts data generation commands. It is
connected to a 16-element deep FIFO, thus allowing a master peripheral to drive a number of commands
into the test pattern generator core.

The command interface maps to the following registers: cmd_lo and cmd_hi. The command is pushed
into the FIFO when the register cmd_lo (address 0) is written to. When the FIFO is full, the command
interface asserts the waitrequest signal. You can create errors by writing to the register cmd_hi (address
1). The errors are only cleared when 0 is written to this register or its respective fields. See page the Test
Pattern Generator Command Registers section for more information on the register fields.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows you to enable or disable the data
generation as well as set the throttle.

This interface also provides useful generation-time information such as the number of channels and
whether or not packets are supported.

Output Interface

The output interface is an Avalon-ST interface that optionally supports packets. You can configure the
output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may contain interleaved packet
fragments for different channels. To keep track of the current symbol’s position within each packet, the
test pattern generator core maintains an internal state for each channel.

Configuration
The following sections list the available options in the MegaWizard™ interface.

Avalon Streaming Test Pattern Generator and Checker Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085

334 Test Pattern Checker 2016.06.17

Functional Parameter

The functional parameter allows you to configure the test pattern generator as a whole: Throttle Seed—
The starting value for the throttle control random number generator. Altera recommends a value which is
unique to each instance of the test pattern generator and checker cores in a system.

Output Interface
You can configure the output interface of the test pattern generator core using the following parameters:

« Number of Channels—The number of channels that the test pattern generator core supports. Valid
values are 1 to 256.

« Data Bits Per Symbol—The number of bits per symbol for the input and output interfaces. Valid
values are 1 to 256. Example—For typical systems that carry 8-bit bytes, set this parameter to 8.

« Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values
are 1 to 256.

o Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

+ Error Signal Width (bits)—The width of the error signal on the output interface. Valid values are 0
to 31. A value of 0 indicates that the error signal is not used.

Test Pattern Checker

This section describes the hardware structure and functionality of the test pattern checker core.

Functional Description

The test pattern checker core accepts data via an Avalon-ST interface, checks it for correctness against the
same predetermined pattern used by the test pattern generator core to produce the data, and reports any
exceptions to the control interface. You can parameterize most aspects of the test pattern checker's
Avalon-ST interface such as the number of error bits and the data signal width, thus allowing you to test
components with different interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control interface. The value
of the throttle register controls the rate at which data is accepted.

Figure 33-1: Test Pattern Checker

control & status

Avalon-MM
Shve Port

TESPATTERN
CHECKER

data_in

Avalon-ST
Sink

Altera Corporation Avalon Streaming Test Pattern Generator and Checker Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 . .
2016.06.17 Configuration 33-5

The test pattern checker core detects exceptions and reports them to the control interface via a 32-element
deep internal FIFO. Possible exceptions are data error, missing start-of-packet (SOP), missing end-of-
packet (EOP) and signalled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same exception occurs

more than once consecutively, only one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the FIFO after they are read by the
control and status interface.

Input Interface

The input interface is an Avalon-ST interface that optionally supports packets. You can configure the
input interface to suit your requirements.

Incoming data may contain interleaved packet fragments. To keep track of the current symbol’s position,
the test pattern checker core maintains an internal state for each channel.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows you to enable or disable data
acceptance as well as set the throttle. This interface provides useful generation-time information such as
the number of channels and whether the test pattern checker supports packets.

The control and status interface also provides information on the exceptions detected by the test pattern
checker core. The interface obtains this information by reading from the exception FIFO.

Configuration

The following sections list the available options in the MegaWizard " interface.

Functional Parameter

The functional parameter allows you to configure the test pattern checker as a whole: Throttle Seed—The
starting value for the throttle control random number generator. Altera recommends a unique value to
each instance of the test pattern generator and checker cores in a system.

Input Parameters
You can configure the input interface of the test pattern checker core using the following parameters:

« Data Bits Per Symbol—The number of bits per symbol for the input interface. Valid values are 1 to
256.

« Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values
are 1 to 32.

o Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

« Number of Channels—The number of channels that the test pattern checker core supports. Valid
values are 1 to 256.

« Error Signal Width (bits)—The width of the error signal on the input interface. Valid values are 0 to
31. A value of 0 indicates that the error signal is not in use.

Avalon Streaming Test Pattern Generator and Checker Cores Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085
33-6 Hardware Simulation Considerations 2016.06.17

Hardware Simulation Considerations

The test pattern generator and checker cores do not provide a simulation testbench for simulating a
stand-alone instance of the component. However, you can use the standard SOPC Builder simulation flow
to simulate the component design files inside an SOPC Builder system.

Software Programming Model

This section describes the software programming model for the test pattern generator and checker cores.

HAL System Library Support

For Nios II processor users, Altera provides HAL system library drivers that enable you to initialize and
access the test pattern generator and checker cores. Altera recommends you to use the provided drivers to
access the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders to your software
application directory:

+ <IP installation directory> /ip /sopc_builder_ip /altera_avalon_data_source/HAL
+ <IP installation directory>/ip/sopc_builder_ip/ altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.

Software Files

The following software files define the low-level access to the hardware, and provide the routines for the
HAL device drivers. Application developers should not modify these files.

o Software files provided with the test pattern generator core:

« data_source_regs.h—The header file that defines the test pattern generator's register maps.

o data_source_util.h, data_source_util.c—The header and source code for the functions and
variables required to integrate the driver into the HAL system library.

+ Software files provided with the test pattern checker core:

» data_sink_regs.h—The header file that defines the core’s register maps.

o data_sink_util.h, data_sink_util.c—The header and source code for the functions and variables
required to integrate the driver into the HAL system library.

Register Maps

This section describes the register maps for the test pattern generator and checker cores.
Test Pattern Generator Control and Status Registers

The table below shows the offset for the test pattern generator control and status registers. Each register is
32 bits wide.

Table 33-3: Test Pattern Generator Control and Status Register Map

base + 0 status
base + 1 control
Altera Corporation Avalon Streaming Test Pattern Generator and Checker Cores

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-01085 .
2016.06.17 Register Maps 33-7

base + 2 |fi||

Table 33-4: Status Field Descriptions

I I O

[15:0] A constant value of 0x64.

[23:16] |NUMCHANNELS RO The configured number of channels.

[30:24] |NUMSYMBOLS RO The configured number of symbols per beat.
[31] SUPPORTPACKETS | RO A value of 1 indicates packet support.

Table 33-5: Control Field Descriptions

I T T

ENABLE Setting this bit to 1 enables the test pattern generator core.
[7:1] Reserved
[16:8] | THROTTLE RW Specifies the throttle value which can be between 0-256, inclusively.

This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.

Setting THROTTLE to O stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0-256 result in a data rate proportional to the
throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

[31:18] |Reserved

Table 33-6: Fill Field Descriptions

I T I .

BUSY A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

[6:1] Reserved
[15:7] |FILL RO The number of commands currently in the command FIFO.
[31:16] |Reserved

Test Pattern Generator Command Registers

The table below shows the offset for the command registers. Each register is 32 bits wide.

Avalon Streaming Test Pattern Generator and Checker Cores Altera Corporation

D Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Avalon%20Streaming%20Test%20Pattern%20Generator%20and%20Checker%20Cores%20(UG-01085%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. UG-01085
33-8 Register Maps 2016.06.17

Table 33-7: Test Pattern Command Register