
11Qsys System Design Components

2013.11.4

QII51025 Subscribe Send Feedback

You can use Qsys system design components and IP cores to design your Qsys systems. The Qsys interfaces
define components appropriate for streaming high-speed data, reading and writing registers and memory,
and controlling off-chip devices.

Related Information
Avalon Interface Specifications

AMBA Protocol Specifications

Creating a System with Qsys

Creating Qsys Components

Qsys Interconnect

Bridges
Qsys provides bridge components to provide flexibility and control in your system implementation. Bridges
are not end points for data, but rather affect the way data is transported between components. You can insert
bridges between masters and slave interfaces to control the topology of a Qsys system, which affects the
interconnect thatQsys generates. You can also use bridges to separate components in different clock domains
and to isolate clock domain crossing logic.

A bridge has one slave interface and one master interface. In Qsys, one or more master interfaces from other
components connect to the bridge slave; then, the bridge master connects to one or more slave interfaces
on other components.

In Figure 1, all three masters have logical connections to all three slaves, although physically each master
connects only to the bridge.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51025
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51025%202013.11.4)%20Qsys%20System%20Design%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Figure 11-1: Example of Bridge in a Qsys System

Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

Transfers initiated to the bridge slave propagate to the bridge master in the same order in which they are
initiated on the bridge slave.

Clock Bridge
The Clock Bridge allows you to connect a clock source to multiple clock input interfaces. You can use this
bridge to connect a clock source that's outside the Qsys system through an exported interface to multiple
clock input interfaces in the system.

Clock outputs have the ability to fan-out without the use of a bridge. You only need a bridge if you want a
clock from an external (exported) source to connect internally to more than one source.

Figure 11-2: Clock Bridge

PIO

S

DMA

M MS

Qsys System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Clock Bridge11-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-MM Clock Crossing Bridge
The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses between different
clock domains. You can also use the Avalon-MM Clock Crossing Bridge to bridge between AXI masters and
slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement the clock crossing logic.
The Clock Crossing Bridge has a number of parameters, including parameters to control the depth of the
command and response FIFOs in both the master and slave clock domains. If the number of in-flight reads
exceeds the depth of the response FIFO, the Clock Crossing Bridge stops sending reads. To maintain
throughput for high-performance applications, increase the response FIFOdepth from the defaultminimum
depth, which is twice the maximum burst size.

Related Information
Creating a System With Qsys

Avalon-MM Pipeline Bridge
The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command and response paths.
It accepts commands on its Avalon-MM slave port and propagates them to its Avalon-MM master port, and
provides separate parameters to turn on pipelining in the command and response networks.

You can also use the Avalon-MM bridge to export a single Avalon-MM slave interface that can be used to
control multiple Avalon-MM slave devices, and you can optionally turn off the pipelining feature of this
bridge. In this configuration, the bridge transfers commands received on its Avalon-MM slave interface to
its Avalon-MM master port.

Figure 11-3 illustrates the use of an Avalon-MM Pipeline Bridge in a XAUI PHY transceiver IP core.

Figure 11-3: Avalon Bridge

Interconnect

Exported to Embedded
Processor on PCB

Interleave

PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline

Bridge (Qsys)

S

PMA
Ch
Cntl

Because the Avalon-MM slave interface is exported to the pins of the device, having a single Avalon-MM
slave port (rather than separate ports for each Avalon-MM slave device) reduces the pin count of the FPGA.

Altera CorporationQsys System Design Components

Send Feedback

11-3Avalon-MM Clock Crossing Bridge
QII51025
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Bridges Between Avalon and AXI Interfaces
When designing a system, you can make connections between AXI and Avalon interfaces without the use
of explicitly-instantiated bridges; the interconnect provides all necessary bridging logic. However, this does
not prevent the use of explicit bridges to separate the AXI and Avalon domains. Using an explicit Avalon-
MM bridge to separate the AXI and Avalon domains, as shown in Figure 11-4, reduces the amount of
bridging logic in the interconnect, at the expense of concurrency.

Figure 11-4: Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Networks

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Shared Avalon & AXI Domains

Address Span Extender
The Address Span Extender component creates a windowed bridge and allows memory-mapped master
interfaces to access a larger address map than the width of their address signals allow. When connected to
an address span extender, an address span restricted master can access a broader address range.

The extender splits up the larger addressable space into separate windows so that the master with a smaller
address span can access the appropriate part of the memory.

For example, if the fast variant of a processor can address only 2GB of address span, and you need that
processor to access a broader span, then you can use the address span extender to access the broader span
by providing a window with a smaller address span. The same issue occurs with SoC devices. For example,
an HPS subsystem in SoC devices can address only 1GB of address span within the FPGA. You can use the
address span extender in this case, as well.

When you implement the address span extender in Qsys for a master with limited addressing space, you
must first decide how large of an address space you want a particular slave to occupy in a master’s address
map.

This component allows you to define between 1 and 64 address windows, and accordingly, a given number
of registers to hold the upper address bits for each window. In the component GUI, you must select the
number of bits you want to access (Expanded Master Byte Address Width), the number of bits you want
the master to see (Slave Word Address Width), and the number of sub-windows.

The upper bits of the slave address are used to pick which window is used. For example, if you specify 4
windows, then the top 2 bits of the slave address are used to specify window [0,1,2,3]. Therefore having
more windows does require the windows to be smaller, for example having 4 windows requires the windows
themselves to be 1/4 the size of the slave address space. The total windowed address space is still equal to
the original slave address space, but the windows allow access to memory regions in a larger overall address
space.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Bridges Between Avalon and AXI Interfaces11-4 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can parametrize the address span extender with an initial fixed address value by entering an address
for the Reset Default for Master Window option, and selecting True for the Disable Slave Control Port
option, which allows the address span extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and is stacked sequentially in the windowed slave interface's address space.
To control the fixed address bits of a particular sub-window, you can write to the sub-window’s register in
the register control slave interface. Qsys structures the logic so that the Quartus II software can optimize
away all unneeded bits.

The Address Span Extender component creates a windowed bridge and allows memory-mapped master
interfaces to access a larger address map than the width of their address signals allow. When connected to
an address span extender, an address span restrictedmaster can access a broader address range. IfBurstcount
Width is set greater than 1, the read burst command is expressed in a single cycle, and assumes all byteenables
are asserted on every cycle.

You can configure address ports within memory-mapped interfaces to be up to 64-bits wide. The address
span extender enables a master to access a windowed portion of a larger memory map. The slave interface
has an address port size corresponding to the address window. For example, when a component's master
port is not 64-bit capable, you can use the Address Span Extender to enable it to access a specific 32-bit
segment of a 64-bit address map.

The Address Span Extender does not limit master and slave widths to a 32-bit and 64-bit configuration. You
can use the Address Span Extender for other width configurations.

Tri-state Components
The tri-state interface type allows you to design Qsys subsystems that connect to tri-state devices on your
PCB. You can use tri-state components to implement pin sharing, convert between unidirectional and
bidirectional signals, and create tri-state controllers for devices whose interfaces can be described using the
tri-state signal types.

Figure 11-5 illustrates the typical use of tri-state components, and includes two Generic Tri-state Conduit
Controllers. The first is customized to control a flash memory. The second is customized to control an off-
chip SSRAM. The Tri-state Conduit Pin Sharer multiplexes between these two controllers, and the Tri-state
Conduit Bridge converts between an on-chip encoding of tri-state signals and true bidirectional signals.

Altera CorporationQsys System Design Components

Send Feedback

11-5Tri-state Components
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11-5: Tri-state Conduit System to Control Off-Chip SRAM and Flash Devices

Altera FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit
Pin

Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte
x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

ConduitCn

TCS

By default, the Tri-state Conduit Pin Sharer and Tri-State Conduit Bridge present byte addresses. Each
address location in many memory devices contains more than one byte of data. In Figure 11-6, the flash
device operates on 16-bit words and must ignore the least-significant bit of the Avalon-MM address, and
shows addr[0]as unconnected. The SSRAM memory operates on 32-bit words and must ignore the two,
low-order memory bits. Because neither device requires a byte address, addr[0] is not routed on the PCB.

Figure 11-6: Address Connections from Qsys System to PCB

PCB_Addr[21:0]

2 MByte SSRAM
(32-bit word)

2 MByte SSRAM
(32-bit word)

0

8 MBytes

16 MBytes

10 MBytes

PCB_Addr[19:1]

A[21:0]

8 MByte Flash
(16-bit word)

8 MByte Flash
(16-bit word)

UnusedA[18:0]

Tristate Conduit
Bridge

PCB

Qsys Address Map

Addr[22:1]
PCB_Addr[21:0]

Addr[0]

Addr[23] x

x

In Figure 11-7, the flash device responds to address range 0 MBytes to 8 MBytes-1. The SSRAM responds
to address range 8 MBytes to 10 MBytes-1. The PCB schematic for the PCB connects addr [20:2] to
addr [18:0] of the SSRAM device because the SSRAM responds to 32-bit word address. The 8 MByte
flash device accesses 16-bit words; consequently, the schematic does not connect addr[0]. The
chipselect signals select between the two devices.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-state Components11-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


If you create a custom tri-state conduit master with word-aligned addresses, the Tri-state Conduit
Pin Sharer does nothing to change or align the address signals. Figure 11-7 illustrates this example
system in Qsys.

Note:

Figure 11-7: Tri-state Conduit System in Qsys

Related Information

• Avalon Interface Specifications

• Avalon Tri-State Conduit Components Use Guide

Generic Tri-state Controller
The Generic Tri-state Controller provides a template for a controller that you can parameterize to reflect
the behavior of an off-chip device.

You can use various parameters to customize the generic tri-state controller, such as the following:

• The width of the address and data signals
• The read and write wait times
• The bus-turnaround time
• The data hold time

Altera CorporationQsys System Design Components

Send Feedback

11-7Generic Tri-state Controller
QII51025
2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


In calculating delays, the Generic Tri-state Controller chooses the larger of the bus-turnaround time
and read latency. Turnaround time is measured from the time that a command is accepted, not from
the time that the previous read returned data.

Note:

The Generic Tri-state Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to an memory-mapped master, such as a
processor.

• Tristate Conduit Master interface—Tri-state master interface usually connects to the tri-state conduit
slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. This interface must be connected to a clock source.
• Reset sink—This interface connects to a reset source interface.

Tri-state Conduit Pin Sharer
The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected tri-state controllers. You
connect all signals from the tri-state controllers to the Tri-state Conduit Pin Sharer and use the parameter
editor to specify the signals that are shared.

The parameter editor includes a Shared Signal Name column, as shown in Figure 11-8.

Figure 11-8: Specifying Shared Signals Using the Tri-state Conduit Pin Sharer

If the widths of shared signals differ, the signals are aligned on their 0th bit and the higher-order pins are
driven to 0 whenever the smaller signal has control of the bus. Unshared signals always propagate through

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-state Conduit Pin Sharer11-8 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


the pin sharer. The tri-state conduit pin sharer uses the round-robin arbiter to select between tri-state conduit
controllers.

All tri-state conduit components connected to a given pin sharer must be in the same clock domain.Note:

Tri-state Conduit Bridge
The Tri-state Conduit Bridge instantiates bidirectional signals for each tri-state signal while passing all other
signals straight through the component. The Tri-state Conduit Bridge registers all outgoing and incoming
signals, which adds two cycles of latency for a read request. You must account for this additional pipelining
when designing a custom controller. During reset, all outputs are placed in a high-impedance state; outputs
are enabled in the first clock cycle after reset is deasserted. TheQuartus II software labels these output signals
bidirectional.

Test Pattern Generator and Checker Cores
The data generation and monitoring solution for Avalon-ST consists of two components: a test pattern
generator core that generates data, and sends it out on an Avalon-ST data interface, and a test pattern checker
core that receives the same data and verifies it. Optionally, the data can be formatted as packets, with
accompanying start_of_packet and end_of_packet signals.

The test pattern generator inserts different error conditions, and the test pattern checker reports these error
conditions to the control interface, each via an Avalon Memory-Mapped (Avalon-MM) slave. The Throttle
Seed is the starting value for the throttle control random number generator. Altera recommends a unique
value for each instance of the test pattern generator and checker cores in a system.

Test Pattern Generator
The test pattern generator core accepts commands to generate data via an Avalon-MM command interface,
and drives the generated data to an Avalon-ST data interface. You can parameterize most aspects of the
Avalon-ST data interface, such as the number of error bits and data signal width, thus allowing you to test
components with different interfaces.

Figure 11-9: Test Pattern Generator Core Block Diagram

Avalon-MM
Slave Port

Av
al
on

-M
M

Sl
av
e
Po

rt

Avalon-ST
SourceTEST PATTERN

GENERATOR
command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data Error Mask. Data
that is not organized in packets is a single stream with no beginning or end. The test pattern generator has
a throttle register that is set via the Avalon-MM control interface. The value of the throttle register is used
in conjunction with a pseudo-random number generator to throttle the data generation rate.

Altera CorporationQsys System Design Components

Send Feedback

11-9Tri-state Conduit Bridge
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Generator Command Interface
The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write slave that accepts data
generation commands. It is connected to a 16-element deep FIFO, thus allowing a master peripheral to drive
a number of commands into the test pattern generator.

The command interface maps to the following registers: cmd_lo and cmd_hi. The command is pushed
into the FIFO when the register cmd_lo (address 0) is addressed. When the FIFO is full, the command
interface asserts thewaitrequest signal. You can create errors bywriting to the registercmd_hi (address
1). The errors are cleared when 0 is written to this register, or its respective fields. Refer to Test Pattern
Generator Command Registers for more information about the register fields.

Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM slave that allows you
to enable or disable the data generation, as well as set the throttle. This interface also provides generation-
time information, such as the number of channels and whether or not data packets are supported.

Test Pattern Generator Output Interface
The output interface of the Test Pattern Generator is an Avalon-ST interface that optionally supports data
packets. You can configure the output interface to align with your system requirements. Depending on the
incoming stream of commands, the output data may contain interleaved packet fragments for different
channels. To keep track of the current symbol’s position within each packet, the test pattern generator
maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following parameters:

• Number of Channels—The number of channels that the test pattern generator supports. Valid values
are 1 to 256.

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values are
1 to 256.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—The width of the error signal on the output interface. Valid values are 0 to
31. A value of 0 indicates that the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test pattern generator as a
whole system.

Test Pattern Checker
The test pattern checker core accepts data via an Avalon-ST interface, verifies it against the same
predetermined pattern used by the test pattern generator to produce the data, and reports any exceptions
to the control interface. You can parameterize most aspects of the test pattern checker's Avalon-ST interface

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator Command Interface11-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


such as the number of error bits and the data signal width, thus allowing you to test components with different
interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control interface. The value of
the throttle register controls the rate at which data is accepted.

Figure 11-10: Test Pattern Checker

Avalon-MM
Slave Port

Av
al
on

-S
T

Si
nk

TEST PATTERN
CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface via a 32-element deep
internal FIFO. Possible exceptions are data error, missing start-of-packet (SOP), missing end-of-packet
(EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same exception occurs
more than once consecutively, only one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the FIFO after they are read by the
control and status interface.

Test Pattern Checker Input Interface
The Test Pattern Checker input interface is an Avalon-ST interface that optionally supports data packets.
You can configure the input interface to align with your system requirements. Incoming data may contain
interleaved packet fragments. To keep track of the current symbol’s position, the test pattern checkermaintains
an internal state for each channel.

Test Pattern Checker Control and Status Interface
The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance, as well as set the throttle. This interface provides generation-time information,
such as the number of channels and whether the test pattern checker supports data packets. The control and
status interface also provides information on the exceptions detected by the test pattern checker. The interface
obtains this information by reading from the exception FIFO.

Test Pattern Checker Functional Parameter
The Test Pattern Checker functional parameter allows you to configure the test pattern checker as a whole
system.

Altera CorporationQsys System Design Components

Send Feedback

11-11Test Pattern Checker Input Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Checker Input Parameters

• You can configure the input interface of the test pattern checker using the following parameters:

Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat. Valid values
are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Number of Channels—The number of channels that the test pattern checker supports. Valid values are
1 to 256.

• Error Signal Width (bits)—The width of the error signal on the input interface. Valid values are 0 to
31. A value of 0 indicates that the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Software Programming Model for the Test Pattern Generator and Checker Cores
The HAL system library support, software files, and register maps describe the software programming model
for the test pattern generator and checker cores.

HAL System Library Support
ForNios II processor users, Altera providesHAL system library drivers that allow you to initialize and access
the test pattern generator and checker cores. Altera recommends you to use the provided drivers to access
the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders to your software
application directory:

• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_source/HAL
• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.Note:

Software Files Provided with the Test Pattern Generator
The following software files define the low-level access to the hardware, and provide the routines for the
HAL device drivers.

Do not modify the software files.Note:

• Software files provided with the test pattern generator core:

• data_source_regs.h—The header file that defines the test pattern generator's register maps.
• data_source_util.h , data_source_util.c—The header and source code for the functions and variables

required to integrate the driver into the HAL system library.

• Software files provided with the test pattern checker core:

• data_sink_regs.h—The header file that defines the core’s register maps.
• data_sink_util.h , data_sink_util.c—The header and source code for the functions and variables

required to integrate the driver into the HAL system library.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker Input Parameters11-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Register Maps for the Test Pattern Generator and Checker Cores

Test Pattern Generator Control and Status Registers

Table 11-8 shows the offset for the test pattern generator control and status registers. Each register is 32-
bits wide.

Table 11-1: Test Pattern Generator Control and Status Register Map

Register NameOffset

statusbase + 0

controlbase + 1

fillbase + 2

Table 11-9 describes the status register bits.

Table 11-2: Status Register Bits

DescriptionAccessNameBit(s)

A constant value of 0x64.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates data packet support.ROSUPPORTPACKETS[31]

Table 11-3: Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern generator core.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.

SettingTHROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT
RESET

[17]

Reserved[31:18]

Altera CorporationQsys System Design Components

Send Feedback

11-13Register Maps for the Test Pattern Generator and Checker Cores
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 11-4: Fill Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

ROBUSY[0]

Reserved[6:1]

The number of commands currently in the command FIFO.ROFILL[15:7]

Reserved[31:16]

Test Pattern Generator Command Registers

Table 11-5 shows the offset for the command registers. Each register is 32-bits wide.

Table 11-5: Test Pattern Command Register Map

Register NameOffset

cmd_lobase + 0

cmd_hibase + 1

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 11-6: cmd_lo Register Bits

DescriptionAccessNameBit(s)

The segment size in symbols. Except for the last segment in a packet,
the size of all segments must be a multiple of the configured number
of symbols per beat. If this condition is not met, the test pattern
generator core inserts additional symbols to the segment to ensure
the condition is fulfilled.

RWSIZE[15:0]

The channel to send the segment on. If the channel signal is less
than 14 bits wide, the low order bits of this register are used to drive
the signal.

RWCHANNEL[29:16]

Set this bit to 1 when sending the first segment in a packet. This bit
is ignored when data packets are not supported.

RWSOP[30]

Set this bit to 1 when sending the last segment in a packet. This bit
is ignored when data packets are not supported.

RWEOP[31]

Table 11-7 describes the cmd_hi register bits.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator Command Registers11-14 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 11-7: cmd_hi Register Bits

DescriptionAccessNameBit(s)

Specifies the value to drive the error signal. A non-zero value
creates a signalled error.

RWSIGNALLED
ERROR

[15:0]

The output data is XORed with the contents of this register to create
data errors. To stop creating data errors, set this register to 0.

RWDATA
ERROR

[23:16]

Set this bit to 1 to suppress the assertion of the startofpacket
signal when the first segment in a packet is sent.

RWSUPRESS
SOP

[24]

Set this bit to 1 to suppress the assertion of the endofpacket
signal when the last segment in a packet is sent.

RWSUPRESS
EOP

[25]

Test Pattern Checker Control and Status Registers

Table 11-8 shows the offset for the control and status registers. Each register is 32 bits wide.

Table 11-8: Test Pattern Checker Control and Status Register Map

Register NameOffset

statusbase + 0

controlbase + 1

Reserved

base + 2

base + 3

base + 4

exception_descriptorbase + 5

indirect_selectbase + 6

indirect_countbase + 7

Table 11-9: Status Register Bits

DescriptionAccessNameBit(s)

Contains a constant value of 0x65.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates packet support.ROSUPPORTPACKETS[31]

Altera CorporationQsys System Design Components

Send Feedback

11-15Test Pattern Checker Control and Status Registers
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 11-10: Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern checker.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
This value is used in conjunction with a pseudorandom number
generator to throttle the data generation rate.

SettingTHROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT
RESET

[17]

Reserved[31:18]

If there is no exception, reading the exception_descriptor register bit register returns 0.

Table 11-11: exception_descriptor Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that an error is detected in the incoming data.RODATA
ERROR

[0]

A value of 1 indicates missing start-of-packet.ROMISSINGSOP[1]

A value of 1 indicates missing end-of-packet.ROMISSINGEOP[2]

Reserved[7:3]

The value of the error signal.ROSIGNALLED
ERROR

[15:8]

Reserved[23:16]

The channel on which the exception was detected.ROCHANNEL[31:24]

Table 11-12: indirect_select Register Bits

DescriptionAccessBits NameBit

Specifies the channel number that applies to the INDIRECT
PACKET COUNT, INDIRECT SYMBOL COUNT, andINDIRECT
ERROR COUNT registers.

RWINDIRECT
CHANNEL

[7:0]

Reserved[15:8]

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker Control and Status Registers11-16 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionAccessBits NameBit

The number of data errors that occurred on the channel specified
by INDIRECT CHANNEL.

ROINDIRECT
ERROR

[31:16]

Table 11-13: indirect_count Register Bits

DescriptionAccessBits NameBit

The number of data packets received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT
PACKET
COUNT

[15:0]

The number of symbols received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT
SYMBOL
COUNT

[31:16]

.

Test Pattern Generator API
The following subsections describe application programming interface (API) for the test pattern generator.

API functions are currently not available from the interrupt service routine (ISR).Note:

data_source_reset() on page 11-17

data_source_init() on page 11-19

data_source_get_id() on page 11-19

data_source_get_supports_packets() on page 11-19

data_source_get_num_channels() on page 11-20

data_source_get_symbols_per_cycle() on page 11-20

data_source_set_enable() on page 11-20

data_source_get_enable() on page 11-21

data_source_set_throttle() on page 11-21

data_source_get_throttle() on page 11-21

data_source_is_busy() on page 11-22

data_source_fill_level() on page 11-22

data_source_send_data() on page 11-22

data_source_reset()
DescriptionInformation Type

void data_source_reset(alt_u32 base);Prototype

No.Thread-safe

Altera CorporationQsys System Design Components

Send Feedback

11-17Test Pattern Generator API
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

< data_source_util.h >Include

base—The base address of the control and status slave.Parameters

void.Returns

This function resets the test pattern generator core including all internal
counters and FIFOs. The control and status registers are not reset by this
function.

Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_reset()11-18 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_source_init()
DescriptionInformation Type

int data_source_init(alt_u32 base, alt_u32
command_base);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.

command_base—The base address of the command slave.

Parameters:

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns:

This function performs the following operations to initialize the test
pattern generator core:

• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

Description:

data_source_get_id()
DescriptionInformation Type

int data_source_get_id(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The test pattern generator core’s identifier.Returns:

This function retrieves the test pattern generator core’s identifier.Description:

data_source_get_supports_packets()
DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

Returns:

Altera CorporationQsys System Design Components

Send Feedback

11-19data_source_init()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

1—Data packets are supported.

0—Data packets are not supported.

This function checks if the test pattern generator core supports data
packets.

Description:

data_source_get_num_channels()
DescriptionDescription

int data_source_get_num_channels(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of channels supported.Returns:

This function retrieves the number of channels supported by the test
pattern generator core.

Description:

data_source_get_symbols_per_cycle()
DescriptionDescription

int data_source_get_symbols(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of symbols transferred in a beat.Returns:

This function retrieves the number of symbols transferred by the test
pattern generator core in each beat.

Description:

data_source_set_enable()
DescriptionInformation Type

void data_source_set_enable(alt_u32 base, alt_u32
value);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

Parameters:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_get_num_channels()11-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

void.Returns:

This function enables or disables the test pattern generator core. When
disabled, the test pattern generator core stops data transmission but
continues to accept commands and stores them in the FIFO

Description:

data_source_get_enable()
DescriptionInformation Type

int data_source_get_enable(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The value of the ENABLE bit.Returns:

This function retrieves the value of the ENABLE bit.Description:

data_source_set_throttle()
DescriptionInformation Type

void data_source_set_throttle(alt_u32 base, alt_
u32 value);

Prototype:

No.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.

value—The throttle value.

Parameters:

void.Returns:

This function sets the throttle value, which can be between 0–256
inclusively. The throttle value, when divided by 256 yields the rate at
which the test pattern generator sends data.

Description:

data_source_get_throttle()
DescriptionInformation Type

int data_source_get_throttle(alt_u32 base);Prototype:

Altera CorporationQsys System Design Components

Send Feedback

11-21data_source_get_enable()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

Thread-safe: Yes.

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The throttle value.Returns:

This function retrieves the current throttle value.Description:

data_source_is_busy()
DescriptionInformation Type

int data_source_is_busy(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—The test pattern generator core is busy.

0—The core is not busy.

Returns:

This function checks if the test pattern generator is busy. The test pattern
generator core is busywhen it is sending data or has data in the command
FIFO to be sent.

Description:

data_source_fill_level()
DescriptionInformation Type

int data_source_fill_level(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_source_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of commands in the command FIFO.Returns:

This function retrieves the number of commands currently in the
command FIFO.

Description:

data_source_send_data()
DescriptionInformation Type

Prototype:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_is_busy()11-22 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

int data_source_send_data(alt_u32 cmd_base, alt_
u16 channel, alt_u16 size, alt_u32 flags, alt_u16
error, alt_u8 data_error_mask);

No.Thread-safe:

< data_source_util.h >Include:

cmd_base—The base address of the command slave.

channel—The channel to send the data on.

size—The data size.

flags—Specifies whether to send or suppress SOP and EOP signals.
Valid values areDATA_SOURCE_SEND_SOP,DATA_SOURCE_SEND_
EOP, DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_
SEND_SUPRESS_EOP.

error—The value asserted on theerror signal on the output interface.

data_error_mask—This parameter and the data areXORed together
to produce erroneous data.

Parameters:

Always returns 1.Returns:

This function sends a data fragment to the specified channel.

If data packets are supported, user applicationsmust ensure the following
conditions are met:

SOP and EOP are used consistently in each channel.

Except for the last segment in a packet, the length of each segment is a
multiple of the data width.

If data packets are not supported, user applications must ensure the
following conditions are met:

No SOP and EOP indicators in the data.

The length of each segment in a packet is a multiple of the data width.

Description:

Test Pattern Checker API
The following subsections describe API for the test pattern checker core. The API functions are currently
not available from the ISR.

data_sink_reset() on page 11-25

data_sink_init() on page 11-25

data_sink_get_id() on page 11-25

data_sink_get_supports_packets() on page 11-26

Altera CorporationQsys System Design Components

Send Feedback

11-23Test Pattern Checker API
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_get_num_channels() on page 11-26

data_sink_get_symbols_per_cycle() on page 11-26

data_sink_set enable() on page 11-26

data_sink_get_enable() on page 11-27

data_sink_set_throttle() on page 11-27

data_sink_get_throttle() on page 11-27

data_sink_get_packet_count() on page 11-28

data_sink_get_error_count() on page 11-28

data_sink_get_symbol_count() on page 11-28

data_sink_get_exception() on page 11-29

data_sink_exception_is_exception() on page 11-29

data_sink_exception_has_data_error() on page 11-30

data_sink_exception_has_missing_sop() on page 11-30

data_sink_exception_has_missing_eop() on page 11-30

data_sink_exception_signalled_error() on page 11-31

data_sink_exception_channel() on page 11-31

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker API11-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_reset()
DescriptionInformation Type

void data_sink_reset(alt_u32 base);Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

void.Returns:

This function resets the test pattern checker core including all internal
counters.

Description:

data_sink_init()
DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns:

This function performs the following operations to initialize the test
pattern checker core:

• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

Description:

data_sink_get_id()
DescriptionInformation Type

int data_sink_get_id(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The test pattern checker core’s identifier.Returns:

This function retrieves the test pattern checker core’s identifier.Description:

Altera CorporationQsys System Design Components

Send Feedback

11-25data_sink_reset()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_get_supports_packets()
DescriptionInformation Type

int data_sink_init(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

1—Data packets are supported.

0—Data packets are not supported.

Returns:

This function checks if the test pattern checker core supports data packets.Description:

data_sink_get_num_channels()
DescriptionInformation Type

int data_sink_get_num_channels(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of channels supported.Returns:

This function retrieves the number of channels supported by the test
pattern checker core.

Description:

data_sink_get_symbols_per_cycle()
DescriptionInformation Type

int data_sink_get_symbols(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The number of symbols received in a beat.Returns:

This function retrieves the number of symbols received by the test pattern
checker core in each beat.

Description:

data_sink_set enable()
DescriptionInformation Type

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_num_channels()11-26 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

Prototype: void data_sink_set_enable(alt_u32 base, alt_u32
value);

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Parameters:

void.Returns:

This function enables the test pattern checker core.Description:

data_sink_get_enable()
DescriptionInformation Type

int data_sink_get_enable(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The value of the ENABLE bit.Returns:

This function retrieves the value of the ENABLE bit.Description:

data_sink_set_throttle()
DescriptionInformation Type

void data_sink_set_throttle(alt_u32 base, alt_u32
value);

Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

value—The throttle value.

Parameters:

void.Returns:

This function sets the throttle value, which can be between 0–256
inclusively. The throttle value, when divided by 256 yields the rate at
which the test pattern checker receives data.

Description:

data_sink_get_throttle()

Altera CorporationQsys System Design Components

Send Feedback

11-27data_sink_get_enable()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

Prototype: int data_sink_get_throttle(alt_u32 base);

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The throttle value.Returns:

This function retrieves the throttle value.Description:

data_sink_get_packet_count()
DescriptionInformation Type

int data_sink_get_packet_count(alt_u32 base, alt_
u32 channel);

Prototype:

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of data packets received on the given channel.Returns:

This function retrieves the number of data packets received on a given
channel.

Description:

data_sink_get_error_count()
DescriptionInformation Type

int data_sink_get_error_count(alt_u32 base, alt_
u32 channel);

Prototype:

No.Thread-safe:

<data_sink_util.h>Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of errors received on the given channel.Returns:

This function retrieves the number of errors received on a given channel.Description:

data_sink_get_symbol_count()

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_packet_count()11-28 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

Prototype: int data_sink_get_symbol_count(alt_u32 base, alt_
u32 channel);

No.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.

channel—Channel number.

Parameters:

The number of symbols received on the given channel.Returns:

This function retrieves the number of symbols received on a given
channel.

Description:

data_sink_get_exception()
DescriptionInformation Type

int data_sink_get_exception(alt_u32 base);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

base—The base address of the control and status slave.Parameters:

The first exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Returns:

This function retrieves the first exception descriptor in the exception
FIFO and pops it off the FIFO.

Description:

data_sink_exception_is_exception()
DescriptionInformation Type

int data_sink_exception_is_exception(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptorParameters:

1—Indicates an exception.

0—No exception.

Returns:

This function checks if a given exception descriptor describes a valid
exception.

Description:

Altera CorporationQsys System Design Components

Send Feedback

11-29data_sink_get_exception()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_exception_has_data_error()
DescriptionInformation Type

int data_sink_exception_has_data_error(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Data has errors.

0—No errors.

Returns:

This function checks if a given exception indicates erroneous data.Description:

data_sink_exception_has_missing_sop()
DescriptionInformation Type

int data_sink_exception_has_missing_sop(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Missing SOP.

0—Other exception types.

Returns:

This function checks if a given exception descriptor indicates missing
SOP.

Description:

data_sink_exception_has_missing_eop()
DescriptionInformation Type

int data_sink_exception_has_missing_eop(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

1—Missing EOP.

0—Other exception types.

Returns:

Description:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_exception_has_missing_sop()11-30 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

This function checks if a given exception descriptor indicates missing
EOP.

data_sink_exception_signalled_error()
DescriptionInformation Type

int data_sink_exception_signalled_error(int
exception);

Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

The signalled error value.Returns:

This function retrieves the value of the signalled error from the exception.Description:

data_sink_exception_channel()
DescriptionInformation Type

int data_sink_exception_channel(int exception);Prototype:

Yes.Thread-safe:

< data_sink_util.h >Include:

exception—Exception descriptor.Parameters:

The channel number on which the given exception occurred.Returns:

This function retrieves the channel number on which a given exception
occurred.

Description:

Splitter Core
The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST source interface to
multiple Avalon-ST sink interfaces. This core supports from 1 to 16 outputs.

Altera CorporationQsys System Design Components

Send Feedback

11-31data_sink_exception_signalled_error()
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11-11: Avalon-ST Splitter Core

Output 0

In_Data

Out_Data

Av
al
on

-S
T

Si
nk

Avalon-ST
Splitter Core

Output N

Avalon-ST
Source

0

Clock

Avalon-ST
Source

N

The Avalon-ST Splitter core copies input signals from the input interface to the corresponding output signals
of each output interface without altering the size or functionality. This includes all signals except for the
ready signal. The core includes a clock signal to determine the Avalon-ST interface and clock domain
where the core resides. Because the clock signal is unused internally, latency is not introduced when using
this core.

Splitter Core Backpressure
The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready signals from the output
interfaces and sending the result to the input interface. As a result, if an output interface deasserts theready
signal, the input interface receives the deasserted ready signal, as well. This functionality ensures that
backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the Out_Valid signals on all other output interfaces
are gated when backpressure is applied from one output interface. In this case, when any output interface
deasserts its ready signal, the Out_Valid signals on the other output interfaces are deasserted, as well.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-gated Out_Valid
signal when backpressure is applied. In this case, when an output interface deasserts its ready signal, the
Out_Valid signals on the other output interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

Splitter Core Interfaces
The Avalon-ST Splitter core supports streaming data, with optional packet, channel, and error signals. The
core propagates backpressure from any output interface to the input interface.

Table 11-14: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Splitter Core Backpressure11-32 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Splitter Core Parameters

Table 11-15: Configurable Splitter Core Parameters

DescriptionDefault ValueLegal ValuesParameter

The number of output interfaces. The value
of 1 is supported for some cases of
parameterized systems inwhichnoduplicated
output is required.

21 to 16Number Of Outputs

Determines whether the Out_Valid signal
is gated or non-gated when backpressure is
applied.

10 or 1Qualify Valid Out

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and
empty signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

Thewidth of thechannel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

The width of theerror signal on the output
interfaces. A value of 0 indicates that the error
signal is not used. This parameter is disabled
when Use Error is set to 0.

10–31Error Width

Delay Core
The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of
clock cycles. This core supports up to 16 clock cycle delays.

Altera CorporationQsys System Design Components

Send Feedback

11-33Splitter Core Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11-12: Avalon-ST Delay Core

Out_Data
In_Data

Clock

Av
al
on

-S
T

Si
nk

Avalon-ST
SourceAvalon-ST

Delay Core

TheDelay core adds a delay between the input and output interfaces. The core accepts transactions presented
on the input interface and reproduces them on the output interface N cycles later without changing the
transaction.

The input interface delays the input signals by a constant N number of clock cycles to the corresponding
output signals of the output interface. The Number Of Delay Clocks parameter defines the constant N,
which must be between 0 and 16. The change of the In_Valid signal is reflected on the Out_Valid
signal exactly N cycles later.

Delay Core Reset Signal
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal. When the core asserts
the reset signal, the output signals are held at 0. After the reset signal is deasserted, the output signals
are held at 0 for N clock cycles. The delayed values of the input signals are then reflected at the output signals
after N clock cycles.

Delay Core Interfaces
The Delay core supports streaming data, with optional packet, channel, and error signals. This core does
not support backpressure.

Table 11-16: Properties of Avalon-ST Interfaces

PropertyFeature

Not supported.Backpressure

Configurable.Data Width

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Delay Core Reset Signal11-34 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Delay Core Parameters

Table 11-17: Configurable Delay Core Parameters

DescriptionDefault ValueLegal ValuesParameter

Specifies the delay the core introduces, in
clock cycles. The value of 0 is supported for
some cases of parameterized systems inwhich
no delay is required.

10 to 16Number Of Delay Clocks

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and
empty signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

Thewidth of thechannel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

The width of theerror signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

10–31Error Width

Round Robin Scheduler
The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-ST
component that buffers data by channels. It reads the almost-full threshold values from themultiple channels
in the multi-channel component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Altera CorporationQsys System Design Components

Send Feedback

11-35Delay Core Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


In a multi-channel component, the component can store data either in the sequence that it comes in (FIFO),
or in segments according to the channel. When data is stored in segments according to channels, a scheduler
is needed to schedule the read operations.

Figure 11-13: Avalon-ST Round Robin Scheduler Block Diagram

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin
SchedulerAv

al
on

-M
M

W
rit
e
M
as
te
r

Avalon-ST
Sink

Round Robin Scheduler Interfaces
The following interfaces are available in the Avalon-ST Round Robin Scheduler core:

• Almost-Full Status Interface
• Request Interface

Almost-Full Status Interface
The Almost-Full Status interface is an Avalon-ST sink interface that collects the almost-full status from the
sink components for the channels in the sequence provided.

Table 11-18: Avalon-ST Interface Feature Support

PropertyFeature

Not supportedBackpressure

Data width = 1; Bits per symbol = 1Data Width

Maximum channel = 32; Channel width = 5Channel

Not supportedError

Not supportedPacket

Request Interface (Round Robin Scheduler)
The Request Interface is an Avalon-MM write master interface that requests data from a specific channel.
The Avalon-ST Round Robin Scheduler cycles through the channels it supports and schedules data to be
read.

Round Robin Scheduler Operation
If a particular channel is almost full, the Round Robin Scheduler does not schedule data to be read from that
channel in the source component.

The scheduler only requests 1 beat of data from a channel at each transaction. To request 1 beat of data from
channel n, the scheduler writes the value 1 to address (4 ×n). For example, if the scheduler is requesting data

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Round Robin Scheduler Interfaces11-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


from channel 3, the scheduler writes 1 to address 0xC. At every clock cycle, the scheduler requests data
from the next channel. Therefore, if the scheduler starts requesting from channel 1, at the next clock cycle,
it requests from channel 2. The scheduler does not request data from a particular channel if the almost-full
status for the channel is asserted. In this case, one clock cycle is used without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component is able to service the
request transaction. The component asserts waitrequest when it cannot accept new requests.

Table 11-19: Ports for the Avalon-ST Round Robin Scheduler

DescriptionDirectionSignal

Clock and Reset

Clock reference.Inclk

Asynchronous active low reset.Inreset_n

Avalon-MM Request Interface

The write address used to indicate which channel has
the request.

Outrequest_address (log2 Max_
Channels–1:0)

Write enable signal.Outrequest_write

The amount of data requested from the particular
channel.

This value is always fixed at 1.

Outrequest_writedata

Wait request signal, used to pause the scheduler when
the slave cannot accept a new request.

Inrequest_waitrequest

Avalon-ST Almost-Full Status Interface

Indicates that almost_full_channel and
almost_full_data are valid.

Inalmost_full_valid

Indicates the channel for the current status indication.Inalmost_full_channel
(Channel_Width–1:0)

A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is
almost full.

Inalmost_full_data (log2
Max_Channels–1:0)

Round Robin Scheduler Parameters

Table 11-20: Configurable Parameters for Avalon-ST Round Robin Scheduler

DescriptionValuesParameters

Specifies the number of channels the Avalon-ST Round
Robin Scheduler supports.

2–32Number of channels

Altera CorporationQsys System Design Components

Send Feedback

11-37Round Robin Scheduler Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionValuesParameters

Specifies whether the almost-full interface is used. If the
interface is not used, the core always requests data from the
next channel at the next clock cycle.

0–1Use almost-full status

Packets to Transactions Converter
The Avalon Packets to Transactions Converter core receives streaming data from upstream components
and initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of how
Packets to Transactions Converter core is used. For more information, refer to the Avalon Interface
Specifications.

Note:

Figure 11-14: Avalon Packets to Transactions Converter Core

Av
al
on

-S
T

Si
nk

Avalon
Packets to
Transactions
Converter

data_out

Av
al
on

-M
M

M
as
te
r

data_in

Av
al
on

-S
T

So
ur
ce

Avalon-MM
Slave

Component

Related Information
Avalon Interface Specifications

Packets to Transactions Converter Interfaces

Table 11-21: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Data width = 8 bits; Bits per symbol = 8.Data Width

Not supported.Channel

Not used.Error

Supported.Packet

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Packets to Transactions Converter11-38 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The Avalon-MM master interface supports read and write transactions. The data width is set to 32 bits, and
burst transactions are not supported.

Packets to Transactions Converter Operation
The Packets to Transactions Converter core receives streams of packets on its Avalon-ST sink interface and
initiates Avalon-MM transactions. Upon receiving transaction responses from Avalon-MM slaves, the core
transforms the responses to packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packets to Transactions Converter Data Packet Formats
A response packet is returned for every write transaction. The core also returns a response packet if a no
transaction (0x7f) is received. An invalid transaction code is regarded as a no transaction. For read
transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in the formats shown in
Table 11-22.

Table 11-22: Data Packet Formats

DescriptionFieldByte

Transaction Packet Format

Type of transaction.Transaction code0

Reserved for future use.Reserved1

Transaction size in bytes. For write transactions, the size
indicates the size of the data field. For read transactions,
the size indicates the total number of bytes to read.

Size[3:2]

32-bit address for the transaction.Address[7:4]

Transaction data; data to be written for write transactions.Data[n:8]

Response Packet Format

The transaction code with the most significant bit inversed.Transaction code0

Reserved for future use.Reserved1

Total number of bytes read/written successfully.Size[4:2]

Related Information
Packets to Transactions Converter Interfaces on page 11-38

Packets to Transactions Converter Supported Transactions

Table 11-23 lists the Avalon-MM transactions supported by the Packets to Transactions Converter core.

Altera CorporationQsys System Design Components

Send Feedback

11-39Packets to Transactions Converter Operation
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 11-23: Transaction Supported

DescriptionAvalon-MM TransactionTransaction
Code

Writes data to the given address until the total number of
bytes written to the same word address equals to the value
specified in the size field.

Write, non-incrementing address.0x00

Writes transaction data starting at the given address.Write, incrementing address.0x04

Reads 32 bits of data from the given address until the total
number of bytes read from the same address equals to the
value specified in the size field.

Read, non-incrementing address.0x10

Reads the number of bytes specified in the size field
starting from the given address.

Read, incrementing address.0x14

No transaction is initiated. You can use this transaction type
for testing purposes. Although no transaction is initiated on
the Avalon-MM interface, the core still returns a response
packet for this transaction code.

No transaction.0x7f

The Packets to Transactions Converter core can process only a single transaction at a time. The ready
signal on the core's Avalon-ST sink interface is asserted only when the current transaction is completely
processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST interface is forwarded
directly to the Avalon-MM interface and vice-versa. Asserting the waitrequest signal on the Avalon-
MM interface backpressures the Avalon-ST sink interface. In the opposite direction, if the Avalon-ST source
interface is backpressured, theread signal on theAvalon-MM interface is not asserted until the backpressure
is alleviated. Backpressuring the Avalon-ST source in the middle of a read could result in data loss. In this
cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write transactions, the actual data
size is expected to be the same as the value of the size property. Whether or not both values agree, the core
always uses the end of packet (EOP) to determine the end of data.

Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction. If an SOP is received
in the middle of a transaction, the core drops the current transaction without returning a response packet
for the transaction, and initiates a new transaction. This effectively precesses packets without an end of
packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions as a no transaction.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Packets to Transactions Converter Malformed Packets11-40 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Streaming Pipeline Stage
The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and outputs the data to an
Avalon-ST sink interface. In the absence of back pressure, the Avalon-ST pipeline stage source interface
outputs data one cycle after receiving the data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to assert its source interface's
current data output. While the pipeline stage is receiving back pressure on its source interface and it receives
new data on its sink interface, the pipeline stage will internally buffer the new data, and assert back pressure
on its sink interface.

Once the back pressure is deasserted, the pipeline stage's source interface is de-asserted and the pipeline
stage will assert internally buffered data (if present). Additionally, the pipeline stage de-asserts back pressure
on its sink interface.

If the ready signal is not pipelined, the pipeline stage becomes a simple register, as shown in Figure 11-15

Figure 11-15: Pipeline Stage Simple Register

Sink Sourcedata_in data_outRegister 0

If the ready signal is pipelined, the pipeline stage must also include a second "holding" register, as shown in
Figure 11-16.

Figure 11-16: Pipeline Stage Holding Register

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

Streaming Channel Multiplexer and Demultiplexer Cores
The Avalon-ST channel multiplexer core receives data from various input interfaces and multiplexes the
data into a single output interface, using the optional channel signal to indicate the origin of the data. The
Avalon-ST channel demultiplexer core receives data from a channelized input interface and drives that data
to multiple output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores that support the
unidirectional flow of data. The multiplexer and demultiplexer allow you to create multiplexed or demulti-

Altera CorporationQsys System Design Components

Send Feedback

11-41Streaming Pipeline Stage
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


plexed datapaths without having to write custom HDL code. The multiplexer includes a Round-Robin
Scheduler.

Software Programming Model For the Multiplexer and Demultiplexer Components
The multiplexer and demultiplexer components do not have any user-visible control or status registers.
Therefore, Qsys cannot control or configure any aspect of the multiplexer or demultiplexer at run-time. The
components cannot generate interrupts.

Multiplexer
The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data onto
a single output interface. The multiplexer includes a round-robin scheduler that selects from the next input
interface that has data. Each input interface has the same width as the output interface, so that the other
input interfaces are backpressured when the multiplexer is carrying data from a different input interface.

The multiplexer includes an optional channel signal that enables each input interface to carry channelized
data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input interface. All input
interfaces must have the same channel width. These bits are appended to either the most or least significant
bits of the output channel signal.

Figure 11-17: Multiplexer

src
sink

data _ in _n

sink

data _ in 0

data _out

..
.

Round Robin , Burst
Aware Scheduler

(optional )

sink

sink

..
.

channel

The scheduler processes one input interface at a time, selecting it for transfer. Once an input interface has
been selected, data from that input interface is sent until one of the following scenarios occurs:

• The specified number of cycles have elapsed.
• The input interface has no more data to send and valid is deasserted on a ready cycle.
• When packets are supported, endofpacket is asserted.

Multiplexer Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets. The input interfaces
are identical; they have the same symbol and data widths, error widths, and channel widths.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Software Programming Model For the Multiplexer and Demultiplexer Components11-42 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Multiplexer Output Interface
The output interface carries the multiplexed data stream with data from the inputs. The symbol, data, and
error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition of the bits needed
to indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel SignalWidth (bits)—The number of bits Qsys uses for the channel signal for output interfaces.
For example, set this parameter to 1 if you have two input interfaces with no channel, or set this parameter
to 2 if you have two input interfaces with a channel width of 1 bit. The input channel can have a width
between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of
0 means the error signal is not used.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer supports. Valid values are
2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single channel before changing to
the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only switches the selected
input interface on packet boundaries. Therefore, packets on the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the high bits of the output
channel signal are used to indicate the origin of the input interface of the data. For example, if the input
interfaces have 4-bit channel signals, and the multiplexer has 4 input interfaces, the output interface has
a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output channel signal indicate origin
of the input interface of the data, and bits [3:0] are the channel bits that were presented at the input
interface.

Demultiplexer
That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data to
multiple output interfaces, where the output interface selected for a particular transfer is specified by the
input channel signal.

The data is delivered to the output interfaces in the same order it is received at the input interface, regardless
of the value of channel, packet, frame, or any other signal. Each of the output interfaces has the same
width as the input interface; each output interface is idle when the demultiplexer is driving data to a different
output interface. The demultiplexer useslog2 (num_output_interfaces) bits of thechannel signal

Altera CorporationQsys System Design Components

Send Feedback

11-43Multiplexer Output Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


to select the output for the data; the remainder of the channel bits are forwarded to the appropriate output
interface unchanged.

Figure 11-18: Demultiplexer

sink
data _out _n

data _out 0

sink
sinkdata _ in

src

src

..
.

..
.

channel

Demultiplexer Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets. You can configure the
following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)—The number of bits used for the channel signal for output interfaces.
A value of 0 means that output interfaces do not use the optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of
0 means the error signal is not unused.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Demultiplexer Output Interface
Each output interface carries data from a subset of channels from the input interface. Each output interface
is identical; all have the same symbol and data widths, error widths, and channel widths. The symbol, data,
and error widths are the same as the input interface. The width of the channel signal is the same as the
input interface, without the bits that were used to select the output interface.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Demultiplexer Input Interface11-44 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer supports Valid values
are 2 to 16.

• High channel bits select output—When this option is turned on, the high bits of the input channel signal
are used by the demultiplexing function and the low order bits are passed to the output.When this option
is turned off, the low order bits are used and the high order bits are passed through.

• Figure 11-19 illustrates the significance of the location of signals; for example, there is one input interface
and two output interfaces. If the low-order bits of the channel signal select the output interfaces, the even
channels goes to channel 0, and the odd channels goes to channel 1. If the high-order bits of the channel
signal select the output interface, channels 0 to 7 goes to channel 0 and channels 8 to 15 goes to channel
1.

Figure 11-19: Select Bits for the Demultiplexer

sink

data _out _n

data _out 0

sink
sink

data _ in
src

src

channel <4 ..0>

channel <3 ..0>

channel <3..0>

Single-Clock and Dual-Clock FIFO Cores
The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers which operate with
a common clock and independent clocks for input and output ports respectively.

Figure 11-20: Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Altera CorporationQsys System Design Components

Send Feedback

11-45Demultiplexer Parameters
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11-21: Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Interfaces Implemented in FIFO Cores
The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and source interfaces in
the dual-clock FIFO core are driven by different clocks. Table 11-24 shows the properties of the Avalon-ST
interfaces.

Table 11-24: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Supported, up to 255 channels.Channel

Configurable.Error

Configurable.Packet

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM interface, and the dual-
clock FIFO core to include an Avalon-MM interface in each clock domain. The Avalon-MM interface
provides access to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure the
almost-empty and almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes.

Related Information

• Avalon-ST Single-Clock FIFO Registers on page 11-49

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Interfaces Implemented in FIFO Cores11-46 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from which you can obtain
the FIFO buffer almost-full and almost empty statuses.

FIFO Operating Modes
• Defaultmode—The core accepts incoming data on the in interface (Avalon-ST data sink) and forwards

it to the out interface (Avalon-ST data source). The core asserts the valid signal on the Avalon-ST
source interface to indicate that data is available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core. The core asserts the
valid signal on the out interface only when a full packet of data is available at the interface. In this
mode, you can also enable the drop-on-error feature by setting the drop_on_error register to 1.
When this feature is enabled, the core drops all packets received with the in_error signal asserted.

• Cut-throughmode—This mode applies only to the single-clock FIFO core. The core asserts the valid
signal on the out interface to indicate that data is available for consumption when the number of entries
specified in the cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and forward parameter to include
the csr interface (Avalon-MM slave). Set the cut_through_threshold register to 0 to enable the
store and forwardmode, and then set the register to any value greater than 0 to enable the cut-throughmode.
The non-zero value specifies the minimum number of FIFO entries that must be available before the data
is ready for consumption. Setting the register to 1 provides you with the default mode.

Fill Level of the FIFO Buffer
You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and status interface.
Turn on the Use fill level parameter (Use sink fill level and Use source fill level in the dual-clock FIFO
core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the latency of the clock
crossing logic, the fill levels reported in the input and output clock domains may be different at any given
instance. In both cases, the fill level may report badly for the clock domain; that is, the fill level is reported
high in the input clock domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is accounted for when
calculating the output fill level, but not when calculating the input fill level. Therefore, the best measure of
the amount of data in the FIFO is given by the fill level in the output clock domain, while the fill level in the
input clock domain represents the amount of space available in the FIFO (available space = FIFO depth –
input fill level).

Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO overflow and
underflow. This feature is available only in the single-clock FIFO core. To use the thresholds, turn on the
Use fill level, Use almost-full status, and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_full_threshold registers via the csr interface and set
the registers to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and almost_empty
interfaces (Avalon-ST status source). The core asserts the almost_full signal when the fill level is equal

Altera CorporationQsys System Design Components

Send Feedback

11-47Avalon-ST Status Interface
QII51025
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


to or higher than the almost-full threshold. Likewise, the core asserts the almost_empty signal when the
fill level is equal to or lower than the almost-empty threshold.

Related Information

• Avalon-ST Single-Clock FIFO Registers on page 11-49

Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores
Table 11-25 describes the parameters that you can configure for the Single-Clock and Dual-Clock FIFO
cores.

Table 11-25: Configurable Parameters

DescriptionLegal
Values

Parameter

These parameters determine the width of the FIFO.

FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in
a beat.

1–32Bits per symbol

1–32Symbols per beat

The width of the error signal.0–32Error width

The FIFO depth. An output pipeline stage is added to the
FIFO to increase performance, which increases the FIFO
depth by one. <n> = n=1,2,3,4...

2 nFIFO depth

Turn on this parameter to enable data packet support on
the Avalon-ST data interfaces.

—Use packets

The width of the channel signal.1–32Channel width

Avalon-ST Single Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface.

—Use fill level

Avalon-ST Dual Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface in the input clock domain.

—Use sink fill level

Turn on this parameter to include the Avalon-MM control
and status register interface in the output clock domain.

—Use source fill level

The length of the write pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability
while increasing the latency of the core.

2–8Write pointer synchronizer
length

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores11-48 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionLegal
Values

Parameter

The length of the read pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability.

2–8Readpointer synchronizer length

Turn on this parameter to specify the maximum channel
number.

—Use Max Channel

Maximum channel number.1–255Max Channel

For more information on metastability in Altera devices, refer to Understanding Metastability in
FPGAs. For more information on metastability analysis and synchronization register chains, refer
to the Managing Metastability.

Note:

Related Information

• Understanding Metastability in FPGAs

• Managing Metastability

Avalon-ST Single-Clock FIFO Registers
The csr interface in the Avalon-ST Single Clock FIFO core provides access to registers.

Table 11-26: Avalon-ST Single-Clock FIFO Registers

DescriptionResetAccessName32-Bit Word
Offset

24-bit FIFO fill level. Bits 24 to 31 are unused.0Rfill_
level

0

Reserved for future use.——Reserved1

Set this register to a value that indicates the FIFO buffer is
getting full.

FIFO
depth–1

RWalmost_
full_
threshold

2

Set this register to a value that indicates the FIFO buffer is
getting empty.

0RWalmost_
empty_
threshold

3

0—Enables store and forward mode.

Greater than 0—Enables cut-through mode and specifies
theminimumof entries in the FIFObuffer before thevalid
signal on the Avalon-ST source interface is asserted. Once
the FIFO core starts sending the data to the downstream
component, it continues to do so until the end of the packet.

This register applies only when the Use store and forward
parameter is turned on.

0RWcut_
through_
threshold

4

Altera CorporationQsys System Design Components

Send Feedback

11-49Avalon-ST Single-Clock FIFO Registers
QII51025
2013.11.4

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionResetAccessName32-Bit Word
Offset

0—Disables drop-on error.

1—Enables drop-on error.

This register applies onlywhen theUsepacket andUse store
and forward parameters are turned on.

0RWdrop_
on_
error

5

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.
Table 11-27 describes the fill level.

Table 11-27: Register Description for Avalon-ST Dual-Clock FIFO

DescriptionReset ValueAccessName32-Bit Word Offset

24-bit FIFO fill
level. Bits 24 to 31
are unused.

0Rfill_level0

Refer to the Avalon Interface Specifications or Avalon Memory-Mapped Design Optimizations for more
information.

Related Information

• Avalon Interface Specifications

• Avalon Memory-Mapped Design Optimizations

Document Revision History
Table 11-28 indicates edits made to the Qsys System Design Components content since its creation.

Table 11-28: Document Revision History

ChangesVersionDate

• AXI Bridge13.1.0November 2013

• Added Streaming Pipeline
Stage support.

• Added AMBA APB support.

13.0.0May 2013

• Moved relevant content from
Embedded IP User Guide.

12.1.0November 2012

Related Information
Quartus II Handbook Archive

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Document Revision History11-50 2013.11.4

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	11. Qsys System Design Components
	Bridges
	Clock Bridge
	Avalon-MM Clock Crossing Bridge
	Avalon‑MM Pipeline Bridge
	Bridges Between Avalon and AXI Interfaces
	Address Span Extender

	Tri-state Components
	Generic Tri-state Controller
	Tri‑state Conduit Pin Sharer
	Tri‑state Conduit Bridge

	Test Pattern Generator and Checker Cores
	Test Pattern Generator
	Test Pattern Generator Command Interface
	Test Pattern Generator Control and Status Interface
	Test Pattern Generator Output Interface
	Test Pattern Generator Functional Parameter

	Test Pattern Checker
	Test Pattern Checker Input Interface
	Test Pattern Checker Control and Status Interface
	Test Pattern Checker Functional Parameter
	Test Pattern Checker Input Parameters

	Software Programming Model for the Test Pattern Generator and Checker Cores
	HAL System Library Support
	Software Files Provided with the Test Pattern Generator
	Register Maps for the Test Pattern Generator and Checker Cores
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers


	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_set_enable()
	data_source_get_enable()
	data_source_set_throttle()
	data_source_get_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_set enable()
	data_sink_get_enable()
	data_sink_set_throttle()
	data_sink_get_throttle()
	data_sink_get_packet_count()
	data_sink_get_error_count()
	data_sink_get_symbol_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()


	Splitter Core
	Splitter Core Backpressure
	Splitter Core Interfaces
	Splitter Core Parameters

	Delay Core
	Delay Core Reset Signal
	Delay Core Interfaces
	Delay Core Parameters

	Round Robin Scheduler
	Round Robin Scheduler Interfaces
	Almost-Full Status Interface
	Request Interface (Round Robin Scheduler)

	Round Robin Scheduler Operation
	Round Robin Scheduler Parameters

	Packets to Transactions Converter
	Packets to Transactions Converter Interfaces
	Packets to Transactions Converter Operation
	Packets to Transactions Converter Data Packet Formats
	Packets to Transactions Converter Supported Transactions
	Packets to Transactions Converter Malformed Packets


	Streaming Pipeline Stage
	Streaming Channel Multiplexer and Demultiplexer Cores
	Software Programming Model For the Multiplexer and Demultiplexer Components
	Multiplexer
	Multiplexer Input Interfaces
	Multiplexer Output Interface
	Multiplexer Parameters

	Demultiplexer
	Demultiplexer Input Interface
	Demultiplexer Output Interface
	Demultiplexer Parameters


	Single-Clock and Dual‑Clock FIFO Cores
	Interfaces Implemented in FIFO Cores
	Avalon-ST Data Interface
	Avalon-MM Control and Status Register Interface
	Avalon-ST Status Interface

	FIFO Operating Modes
	Fill Level of the FIFO Buffer
	Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	Configurable Parameters for the Single-Clock and Dual-Clock FIFO Cores
	Avalon-ST Single-Clock FIFO Registers

	Document Revision History


