
Qsys System Design Tutorial
2015.05.04

TU-01006 Subscribe Send Feedback

This tutorial introduces you to the Qsys system integration tool available with the Quartus®II software.

This tutorial shows you how to design a system that uses various test patterns to test an external memory
device. It guides you through system requirement analysis, hardware design tasks, and evaluation of the
system performance, with emphasis on system architecture.

In this tutorial, you create a memory tester system that tests a synchronous dynamic random access
memory (SDRAM) device. The final system contains the SDRAM controller and instantiates a Nios II
processor and embedded peripherals in a hierarchical subsystem. The final design includes various Qsys
components that generate test data, access memory, and verify the returned data.

The memory tester components for the design are Verilog HDL components with an accompanying
Hardware Component Description File (_hw.tcl) that describes the interfaces and parameterization of
each component. The _hw.tcl files are located in the tt_qsys_design\memory_tester_ip directory.

The final system contains the following components:

• Processor subsystem based on the Nios II/e core, which includes an on-chip RAM to store the process‐
or's software code, and a JTAG UART to communicate via JTAG and display the memory test results
in the host PC's console.

• SDRAM controller to control the off-chip DDR SDRAM device under test.
• Custom and pseudo-random binary sequence (PRBS) pattern generators and checkers to test the

robustness of links.
• Pattern select multiplexer and demultiplexer to choose between the two pattern generators and

checkers.
• Pattern writer and reader that interact with the SDRAM controller.
• Memory test controller.

Each section in this tutorial provides an overview describing the components that you instantiate. You
can use the final system on hardware without a license, and perform the following actions with Altera's
free OpenCore Plus evaluation feature:

• Simulate the behavior of the system and verify its functionality.
• Generate time-limited device programming files for designs that incorporate Altera or partner IP.
• Program a device and verify your design in hardware.

You can use the Nios II/e processor and the DDR SDRAM IP cores with a Quartus II subscription license.
Design files for other development kit boards use different DDR SDRAM controllers to match the
memory device available on the development kit.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=TU-01006
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(TU-01006%202015.05.04)%20Qsys%20System%20Design%20Tutorial&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


In this tutorial, you instantiate the complete memory tester system in the top-level system along with the
processor IP Cores, which are grouped as their own processor system, and the SDRAM Controller IP. The
Nios II processor includes a software program to control the memory tester system, which communicates
with the SDRAM Controller to access the off-chip SDRAM device under test.

Figure 1: Qsys Memory Tester

The components in the memory tester system are grouped into a single Qsys system with three major
design functions. The design hierarchy allows you to instantiate the data pattern generator and data
pattern checker components into separate systems. You can then add the memory tester system with the
memory master and controller components.

Top-Level Qsys System

Memory Tester
Data Pattern Generator Memory Master and Controller Data Pattern Checker

Processor
IP Cores

SDRAM
Controller

SDRAM
Under Test

Custom 
Pattern 
Generator

PRBS 
Generator

Pattern 
Select 
(MUX)

Pattern Writer
Checker 

Select 
(DEMUX )

Test Controller PRBS 
Checker

Custom 
Pattern 
Checker

Nios II

Onchip 
RAM 

(Code 
and Data)

Avalon-MM Interface
Avalon-ST Interface

Pattern Reader

Pipeline 
Bridge

JTAG 
UART

Related Information
Download and Install the Tutorial Design Files on page 3

AN320: OpenCore Plus Evaluation of Megafunctions

2 Qsys System Design Tutorial
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

http://www.altera.com/literature/an/an320.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Software and Hardware Requirements
The Qsys System Design tutorial requires the following software and hardware requirements:

• Altera Quartus II software.
• Nios II EDS.
• tt_qsys_design.zip design files, available from the Qsys Tutorial Design Example page. The design

files include project files set up for select Altera development boards, and components that you can use
in any Qsys design.

You can build the Qsys system in this tutorial for any Altera development board or your own custom
board, if it meets the following requirements:

• An Altera Arria, Cyclone, or Stratix series FPGA.
• Minimum of 12k logic elements (LEs).
• Minimum of 128k of embedded memory.
• JTAG connection to the FPGA that provides a communications link back to the host so that you can

monitor the memory test progress.
• Any memory that has a Qsys-based controller with an Avalon® Memory-Mapped (Avalon-MM) slave

interface.

Related Information

• Altera Software Installation and Licensing Manual.
• Qsys Tutorial Design Example
• Qsys Tutorial Design Example (detailed diagram)

Download and Install the Tutorial Design Files
1. On the Qsys Tutorial Design Example page, under Using this Design Example, click Qsys Tutorial

Design Example (.zip) to download and install the tutorial design files for the Qsys tutorial.
2. Extract the contents of the archive file to a directory on your computer. Do not use spaces in the

directory path name.

In place of following all steps in this tutorial to create subsystem, hierarchical, and top-level design files,
you can copy the completed design files listed below into the tt_qsys_design\quartus_ii_projects_for_boards\
<development_board_type> directory, depending on your board type.

• The two completed subsystems: pattern_generator_system.qsys, and pattern_checker_system.qsys
from the tt_qsys_design\completed_subsystems directory.

• The hierarchical system memory_tester_system.qsys from the tt_qsys_design
\completed_subsystems\completed_memory_tester_system directory.

• The top-level hierarchical system top_system.qsys from the tt_qsys_design
\quartus_ii_projects_for_boards\<development_board_type>
\backup_and_completed_top_system\completed_top_system directory.

Related Information

• Qsys Tutorial Design Example
• Qsys Tutorial Design Example (.zip)

TU-01006
2015.05.04 Software and Hardware Requirements 3

Qsys System Design Tutorial Altera Corporation

Send Feedback

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/download/tt_qsys_design.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Detailed Diagram of the Memory Tester System

Open the Tutorial Project
The design files for the Qsys tutorial provide the custom IP design blocks that you need, and a partially
completed Quartus II project and Qsys system.

The following design requirements are included in the Qsys tutorial design files:

• Quartus II project I/O pin assignments and Synopsys Design Constraint (.sdc) timing assignments for
each supported development board.

• Parameterized Nios II processor core and software to communicate with the host PC that controls the
memory test system that you develop.

• Parameterized DDR SDRAM controller to use the memory on the development board.

To open the tutorial project:

1. Open the Quartus II software.
2. To open the Quartus II Project File (.qpf) for your board, click File > Open Project.
3. Browse to the tt_qsys_design\quartus_ii_projects_for_boards\<development_board>\ directory.
4. Select the relevant board-specific .qpf file, and then click Open.

Creating Qsys Systems
The data pattern generator and data pattern checker are design blocks for the memory tester system. In
this tutorial, you learn to instantiate, parameterize, and connect components by creating the data pattern
generator and data pattern checker Qsys systems.

• Data pattern generator—The data pattern generator generates high-speed streaming data, which
performs either as a PRBS, or as a soft programmable sequence, for example, “walking ones.” The
design sends the data with an Avalon-Streaming (Avalon-ST) connection to the pattern writer of the
memory master and control logic. The data pattern generator writes the data to memory based on
commands issued by the controller logic. When the design writes the data to memory, the pattern
reader logic reads the contents back and sends it to the data pattern verification logic.

• Data pattern checker—The data pattern checker accepts the data read back by the pattern reader from
an Avalon-ST connection. The design verifies the data pattern to ensure that the pattern it writes to
memory is identical to the data that it reads back.

Create a Data Pattern Generator Qsys System
The data pattern generator includes two components to generate test patterns, and a third component to
multiplex the data that a processor controls. You configure the pattern generator to match the width of
the memory interface. Because the data pattern generator provides a full word of data every clock cycle,
configuring the components to match the memory width provides sufficient bandwidth to access the
memory.

Note: As you add components and make connections in your Qsys system, error and warning messages
appear in the Qsys Messages tab, indicating steps that you must perform before the system is
complete. Some error messages appear between steps and are not resolved immediately; as you
progress through the tutorial, errors are resolved, and the error messages disappear.

4 Open the Tutorial Project
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You must use the exact system names described in this tutorial in order for the provided scripts to
function correctly.

Create a New Qsys System and Set up the Clock Source

1. In the Quartus II software, click Tools > Qsys to create a new Qsys design.
2. In the System Contents tab, Qsys shows a clock source instance, clk_0. To open the clock source

settings, right-click clk_0, and then click Edit.
3. Turn off Clock frequency is known to indicate that, when created, the higher-level hierarchical system

that instantiates this subsystem provides the clock frequency.
4. Click Finish.
5. Click File > Save As to save the Qsys system.
6. In the Save As dialog box, type pattern_generator_system, and then click Save.

If Qsys prompts you to open the top_system.qsys file, click Cancel in the Open dialog box

Add a Pipeline Bridge
The components that make up the data pattern generator include several Avalon-MM slave interfaces. To
allow a higher-level system to access the Avalon-MM slave interfaces by reading and writing to a single
slave interface, you can consolidate the slave interfaces behind an Avalon-MM pipeline bridge, and export
a single Avalon-MM slave interface out of the system.

To determine the required address width for a bridge, you must know the required addresses span of the
other components in the system. Memory-mapped component interfaces outside the system address each
interface in the system by specifying a memory offset value relative to the base address of the bridge.

A pipeline bridge can also improve system timing performance by optionally adding pipeline registers to
the design.

1. In the Library search box, type bridge to filter the component list and show only bridge components.
2. Select Avalon-MM Pipeline Bridge, and then click Add.
3. In the parameter editor, under Parameters, type 11 for the Address width.

This width accommodates the memory span of all memory-mapped components behind the bridge in
this system. As you add the other components in the system, you specify their base addresses within
the span of the address space.

4. Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name mm_bridge_0.

5. On the System Contents tab, right-click mm_bridge_0, click Rename, and then type mm_bridge.
6. In the Clock column for the mm_bridge clk interface, select clk_0 from the list.
7. To export the mm_bridge s0 interface, double-click the Export column, and then type slave.

TU-01006
2015.05.04 Create a New Qsys System and Set up the Clock Source 5

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Add a Custom Pattern Generator
The pattern generator generates multiple test patterns to test the off-chip SDRAM device. The custom
pattern generator system provides a stream of pattern data via an Avalon-ST source interface.

The component is programmed with the pattern data and a pattern length. When the end of the pattern is
reached, the custom pattern generator cycles back to the first element of the pattern. This custom pattern
generator generates the following standard memory tester patterns:

• Walking ones
• Walking zeros
• Low frequency
• Alternating low frequency
• High frequency
• Alternating high frequency
• Synchronous PRBS

The width of the memory dictates the walking ones or zeros pattern lengths. For example, when testing a
32-bit memory, the walking ones or zeros pattern is 32 elements in length before repeating. The high and
low frequency patterns contain only two elements before repeating. The synchronous PRBS pattern is the
longest pattern containing 256 elements before repeating.

This custom pattern generator contains three interfaces, two of which control the generated pattern, and a
third interface which control the behavior of the custom pattern generated. The processor accesses the
pattern_access interface, which is write only, to program the elements of the custom pattern that are sent
to the pattern writer core, and the csr interface, which is used for the control and status registers. The
st_pattern_output is the streaming source interface that sends data to the pattern writer core.

To add the custom pattern generator:

1. In the IP Catalog, expand Memory Test Microcores, and then double-click Custom Pattern
Generator.

2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to custom_pattern_generator.
4. Set the custom_pattern_generator clock interface to clk_0.
5. To connect the custom_pattern_generator csr interface to the mm_bridge m0 interface, in the

Connections column, click to fill in the connection dot between the custom_pattern_generator csr
interface and the mm_bridge m0 interface.

6. Connect the custom_pattern_generator pattern_access interface to the mm_bridge m0 interface.
The processor accesses the system through the m0 interface to communicate with the csr and
pattern_access interfaces.

7. To assign the custom_pattern_generator csr interface to a base address of 0400, in the Base column,
double-click the 0x00000000 address, and then enter 400 for the base address, which is in hexadecimal
format.
If the Base column is locked for the custom_pattern_generator csr, right-click and then click Unlock
Base Address.

The address space represents memory accessible by the processor. Each address specifies a location in
memory that can be addressed and accessed, and each interface must have a unique address range. The
address space of each interface is determined by its base address and its memory span, or how much
memory is required for that interface.

6 Add a Custom Pattern Generator
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can see the default address range of the pattern_access interface in the Base and End columns on the
System Contents tab.

You assign a base address for the csr interface that is higher than the end address of the pattern_access
interface to avoid conflicting with the address space of the pattern_access interface.

Add a PRBS Pattern Generator
The output of the PRBS pattern generator is a statically-defined PRBS pattern. You can specify the pattern
length before the pattern repeats in the parameter editor. The pattern length is defined by 2^(data width)
– 1.

For example, a 32-bit PRBS pattern generator repeats the pattern after it sends 4,294,967,295 elements.
You set the width of the PRBS generator based on the (local) data width of the memory on your board.

The PRBS pattern generator has two interfaces; the csr and the st_pattern_output streaming source
interface. The csr interface controls the behavior of the PRBS pattern generated. The st_pattern_output
streaming source interface sends data to the pattern writer component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS Pattern Generator.
2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to prbs_pattern_generator.
4. Set the prbs_pattern_generator clock interface to clk_0.
5. Connect the prbs_pattern_generator csr interface to the mm_bridge m0 interface.
6. Assign the prbs_pattern_generator csr interface to a base address of 0x0420, which is a base address

just higher than the end address of the custom_pattern_generator csr interface of 0x410.

Add a Two-to-One Streaming Multiplexer
You add a two-to-one streaming multiplexer between the pattern generators and the pattern writer
because the system has two pattern sources, and the pattern writer component accepts data only from one
streaming source. The two-to-one streaming soft programmable multiplexer IP core allows the processor
to select which pattern to send to the pattern writer.

The two-to-one streaming multiplexer component has the following interfaces:

• Two streaming inputs: st_input_A and st_input_B.
• One streaming output: st_output.
• One csr slave interface, which the processor controls to select whether input A or input B is sent to the

streaming output.

The custom pattern generator connects to input A, and the PRBS pattern generator connects to input B.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click Two-to-one Streaming
Mux.

2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to two_to_one_st_mux.
4. Set the two_to_one_st_mux clock to clk_0.
5. Connect the two_to_one_st_mux st_input_A interface to the custom_pattern_generator

st_pattern_output interface.
6. Connect the two_to_one_st_mux st_input_B interface to the prbs_pattern_generator

st_pattern_output interface.

TU-01006
2015.05.04 Add a PRBS Pattern Generator 7

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


7. Connect the two_to_one_st_mux csr interface to the mm_bridge m0 interface.
8. Export the two_to_one_st_mux st_output interface with the name st_data_out.
9. Assign the two_to_one_st_mux csr interface to a base address of 0x0440, which is a base address

higher than the end address of the prbs_pattern_generator csr interface at base address 0x0420

The output of the two-to-one streaming multiplexer carries the pattern data from either the custom
pattern generator or the PRBS pattern generator, to the pattern writer. The data, from the output of the
two-to-one streaming multiplexer, achieves a throughput of one word per clock cycle.

Verify the Memory Address Map

You control the system by accessing the memory locations allocated to each component within the
subsystem. To ensure that the memory map of the system you create matches the memory map of other
components, you must verify the base addresses for the data pattern generator system.

On the Address Map tab, verify that the entries in the Address Map table match the values in 
#mwh1411073373020/table_54ED964DACCD4D7480A621FF0B0D0E00. Red exclamation marks
indicate that the address ranges overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.

Table 1: Address Map Table

Component Address

custom_pattern_generator.csr 0x00000400 – 0x0000040f

custom_pattern_generator.pattern_access 0x00000000 – 0x000003ff

prbs_pattern_generator.csr 0x00000420 – 0x0000043f

two_to_one_st_mux.csr 0x00000440 – 0x00000447

Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the Messages tab. Qsys
allows multiple reset domains, or one reset signal for the system. In the design, you want to connect all the
reset signals with the incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you have any error
messages in the Messages tab, review the procedures to create this system to ensure you did not miss a
step. You can view the reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Qsys Interconnect on the System menu.

Save the System

At this point, there should be no remaining error messages in the Messages tab, and the system is
complete. Save the system.

Create a Data Pattern Checker Qsys System
The data pattern checker system receives a pattern from SDRAM and verifies it against the pattern from
the data pattern generator. The pattern reader sends the data to a one-to-two streaming demultiplexer
that routes the data to either the custom pattern checker or the PRBS pattern checker. The one-to-two

8 Verify the Memory Address Map
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


streaming demultiplexer is soft programmable so that the processor can select which pattern checker IP
core should verify the data that the pattern reader reads. The custom pattern checker is also soft program‐
mable and is configured to match the same pattern as the custom pattern generator.

Refer to the Qsys Memory Tester figure for a graphical description.

Related Information
Qsys System Design Tutorial on page 1

Create a New Qsys System and Set Up the Clock Soource

1. In the Quartus II software, click Tools > Qsys to create a new Qsys design.
2. In the System Contents tab, Qsys shows a clock source instance, clk_0. To open the clock source

settings, right-click clk_0, and then click Edit.
3. Turn off Clock frequency is known to indicate that, when created, the higher-level hierarchical system

that instantiates this subsystem provides the clock frequency.
4. Click Finish.
5. Click File > Save As to save the Qsys system.
6. In the Save As dialog box, type pattern_checker_system, and then click Save.

Add a Pipeline Bridge

1. In the Library search box, type bridge to filter the component list and show only bridge components.
2. Select Avalon-MM Pipeline Bridge, and then click Add.
3. In the parameter editor, under Parameters, type 11 for the Address width.

This width accommodates the memory span of all memory-mapped components behind the bridge in
this system. As you add the other components in the system, you specify their base addresses within
the span of the address space.

4. Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name mm_bridge_0.

5. On the System Contents tab, right-click mm_bridge_0, click Rename, and then type mm_bridge.
6. In the Clock column for the mm_bridge clk interface, select clk_0 from the list.
7. To export the mm_bridge s0 interface, double-click the Export column, and then type slave.

Add a Custom Pattern Checker
The custom pattern checker performs the opposite operation of the custom pattern generator. It has a
streaming input interface, st_pattern_input, that accepts data from the one-to-two streaming
demultiplexer. The processor uses the Avalon-MM csr slave interface to control the component. The
custom packet checker also has a memory-mapped slave interface, pattern_access, that the processor uses
to program the same patterns as the custom pattern generator component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click Custom Pattern Checker.
2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to custom_pattern_checker.
4. Set the custom_pattern_checker clock to clk_0.
5. Connect the custom_pattern_checker csr interface to the mm_bridge m0 interface.
6. Connect the custom_pattern_checker pattern_access interface to the mm_bridge m0 interface.
7. Assign the custom_pattern_checker csr interface to a base address of 0x0420.
8. Maintain the custom_pattern_checker pattern_access interface base address of 0x0000.

TU-01006
2015.05.04 Create a New Qsys System and Set Up the Clock Soource 9

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Add the PRBS Pattern Checker
The PRBS pattern checker performs the opposite operation of the PRBS pattern generator. The processor
uses the memory-mapped csr slave interface to control the component. The st_pattern_input streaming
input accepts data from the one-to-two streaming demultiplexer.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS Pattern Checker.
2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to prbs_pattern_checker.
4. Set the prbs_pattern_checker clock to clk_0.
5. Connect the prbs_pattern_checker csr interface to the mm_bridge m0 interface.
6. Assign the prbs_pattern_checker csr interface to a base address of 0x0440.

Add a One-to-Two Streaming Demultiplexer
The one-to-two streaming demultiplexer performs the opposite operation of the two-to-one streaming
multiplexer. It has a streaming input interface, st_input, that accepts data from the pattern reader, and
two streaming output interfaces, st_output_A and st_output_B, that connect to the custom pattern
generator and PRBS pattern generator. To allow the processor to program the data route through the
component, the system includes the slave interface, csr.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click One-to-two Streaming
Demux.

2. In the parameter editor, accept the default parameters, and then click Finish.
3. Rename the instance to one_to_two_st_demux.
4. Set the one_to_two_st_demux clock to clk_0.
5. Export the one_to_two_st_demux st_input interface with the name st_data_in.
6. Connect the one_to_two_st_demux csr interface to the mm_bridge m0 interface.
7. Assign the one_to_two_st_demux csr interface to a base address of 0x0400.
8. Connect the custom_pattern_checker st_pattern_input interface to the one_to_two_st_demux

st_output_A interface.
9. Connect the prbs_pattern_checker st_pattern_input interface to the one_to_two_st_demux

st_output_B interface.

Verify the Memory Address Map

On the Address Map tab, verify that the entries in the Address Map table match the values in 
#mwh1411073373020/table_54ED964DACCD4D7480A621FF0B0D0E00. Red exclamation marks
indicate that the address ranges overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.

Table 2: Address Map Table

Component Address

one_to_two_st_demux.csr 0x00000400 - 0x00000407

custom_pattern_checker.csr 0x00000420 - 0x0000042f

custom_pattern_checker.pattern_access 0x00000000 - 0x000003ff

prbs_pattern_checker.csr 0x00000440 - 0x0000045f

10 Add the PRBS Pattern Checker
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the Messages tab. Qsys
allows multiple reset domains, or one reset signal for the system. In the design, you want to connect all the
reset signals with the incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you have any error
messages in the Messages tab, review the procedures to create this system to ensure you did not miss a
step. You can view the reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Qsys Interconnect on the System menu.

Save the System

At this point, there should be no remaining error messages in the Messages tab, and the system is
complete. Save the system.

Assemble a Hierarchical System
Hierarchical systems allow you to reuse modular system components. Additionally, hierarchical systems
allow you to break large systems into smaller subsystems thus, creating more manageable designs.

The memory tester design includes the following lower-level subsystems:

• Data pattern generator—Generates and transmits Avalon-ST data to the memory tester components.
• Data pattern checker—Receives and verifies Avalon-ST data from the memory tester components.

TU-01006
2015.05.04 Connect the Reset Signals 11

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 2: Top-Level Memory Tester Design with a Processor and SDRAM Controller

Note: The hierarchical system you create is based on the lower-level pattern_checker_system.qsys, and
pattern_generator_system.qsys subsystems that you created in previous sections. If you did not
create these subsystems in the previous section, you can use the completed versions provided with
the design files in the tt_qsys_design\completed_subsystems directory available from the Qsys
Tutorial Design Example web page. Copy these files to the appropriate tt_qsys_design\quartus_ii_
projects_for_boards\ <development_board> directory for your board.

Related Information

• Download and Install the Tutorial Design Files on page 3

12 Assemble a Hierarchical System
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Create a Data Pattern Generator Qsys System on page 4
• Create a Data Pattern Checker Qsys System on page 8
• Qsys Tutorial Design Example

Create the Hierarchical Memory Tester System
The memory tester system includes several slave interfaces. However, the memory tester groups the
interfaces behind a pipeline bridge that exports a single slave interface to the top-level system. This
technique allows the top-level system to access all of the memory-mapped slave ports by reading and
writing to a single pipeline bridge slave interface. The bridge also adds a level of pipelining, which can
improve timing performance.

Figure 3: Memory Tester Design Interface

M

S

Sr

Sk

Avalon-MM Master

Avalon-MM Slave

Avalon-ST Source

Avalon-ST Sink

M

S

Pipeline Bridge

Sr

S

Pattern Generator
Subsystem

Sk

S

Data Checker
Subsystem

Sr

S

RAM Test
Controller

Sr

M

Sk

Pattern
Reader

Sr

M

Sk

Pattern
Writer

Sk

Avalon-MM Interface

Avalon-ST Interface

Legend

Memory Master
Components

TU-01006
2015.05.04 Create the Hierarchical Memory Tester System 13

Qsys System Design Tutorial Altera Corporation

Send Feedback

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. In Qsys, create a new system called, memory_tester_system.
2. For the clk instance, turn off Clock frequency is known to indicate that the higher-level hierarchical

system that instantiates this subsystem provides the clock frequency.
3. In the IP Catalog, select the Avalon-MM Pipeline Bridge to add to your Qsys system.
4. For the Avalon-MM Pipeline Bridge, in the parameter editor, type 13 for the Address width.

To accommodate for the address translation from master to slave, that is a byte address as the input,
and a word address (4 bytes) as the output, the address width increases from 11.

5. Rename the instance to mm_bridge.
6. Set the mm_bridge_clk interface to clk_0.
7. Export the mm_bridge s0 interface with the name slave.

Add the Pattern Generator
The custom pattern generator system provides a stream of pattern data via an Avalon-ST source interface.
You control the system by accessing the memory locations allocated to each component within the
subsystem. The system connects slave ports to a pipeline bridge, which it then exposes outside of the
system.

The pattern generator system contains the following components:

• Pipeline bridge
• Custom pattern generator
• PRBS pattern generator
• Two-to-one streaming multiplexer
• Streaming timing adapters

1. In the IP Catalog, under Project expand System, and then double-click pattern_generator_system.
2. In the parameter editor, click Finish to accept the default settings.
3. Rename the instance to pattern_generator_subsystem.
4. Set the pattern_generator_subsystem clk to clk_0.
5. Connect the pattern_generator_subsystem slave interface to the mm_bridge m0 interface.
6. Connect the pattern_generator_subsystem reset interface to the clk_0 clk_reset interface.

Add the Pattern Checker
The pattern checker system validates data that arrives via an Avalon-ST sink interface. You control the
system by accessing the memory locations allocated to each component within the subsystem. The system
connects all of the slave ports to a pipeline bridge, which it then exposes outside of the system.

The pattern checker system contains the following components:

• Pipeline bridge
• Custom pattern checker
• PRBS pattern checker
• One-to-two demultiplexer

14 Add the Pattern Generator
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. In the IP Catalog, double-click pattern_checker_system from the System group.
2. In the parameter editor, click Finish to accept the default settings.
3. Rename the instance to pattern_checker_subsystem.
4. Set the pattern_checker_subsystem clk to clk_0.
5. Connect the pattern_checker_subsystem slave interface to the mm_bridge m0 interface.
6. Connect the pattern_checker_subsystem reset interface to the clk_0 clk_reset interface.

Add Memory Master Components

Memory masters access the SDRAM controller by writing the test pattern to the memory and reading the
pattern back for validation. The RAM test controller accepts commands from the processor and controls
the memory masters. Each command contains a start address, test length in bytes, and memory block size
in bytes. The RAM test controller segments the commands into smaller block transfers and issues the
commands to the read and write masters independently via streaming connections.

When the pattern reader or writer components complete a block transfer, they signal to the RAM test
controller that they are ready for another command. The RAM test controller issues the block-sized
commands independently, which minimizes the number of idle cycles between memory transfers. The
RAM test controller also ensures that the pattern reader never overtakes the pattern writer with respect to
the memory locations it is testing, otherwise data corruption occurs.

The SDRAM controller is parameterized to use a local maximum burst length of 2. The pattern reader and
writer components are also configured to match this burst length to maximize the memory bandwidth.

Add a Pattern Writer Component
The pattern writer component accepts memory transfer commands from the RAM test controller with the
command streaming interface. The st_data streaming interface accepts data provided by the design’s
pattern generator. The mm_data memory-mapped interface writes the pattern data to the SDRAM
controller.

Before you begin

1. In the IP Catalog, double-click Pattern Writer from the Memory Test Microcores group.
2. In the parameter editor, turn on Burst Enable.
3. Ensure that the Maximum Burst Count is 2.
4. Ensure that Enable Burst Re-alignment is turned on.
5. To accept the other default parameters, click Finish.
6. Rename the instance to pattern_writer.
7. Set the pattern_writer clock to clk_0.
8. Connect the pattern_writer st_data interface to the pattern_generator_subsystem st_data_out

interface.
9. Export the pattern_writer mm_data interface with the name write_master.

Add a Pattern Reader Component
The pattern reader component accepts memory transfer commands from the RAM test controller with
the command streaming interface. The mm_data interface reads the pattern data from the SDRAM
controller. The st_data interface sends the data read from memory to the design’s pattern checker.

TU-01006
2015.05.04 Add Memory Master Components 15

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. In the IP Catalog, double-click Pattern Reader from the Memory Test Microcores group.
2. n the parameter editor, turn on Burst Enable.
3. Ensure the Maximum Burst Count is 2.
4. Ensure that Enable Burst Re-alignment is turned on.
5. To accept the other default parameters, click Finish.
6. Rename the instance to pattern_reader.
7. Set the pattern_reader clock to clk_0.
8. Connect the pattern_reader st_data interface to the pattern_checker_subsystem st_data_in

interface.
9. Export the pattern_reader mm_data interface with the name read_master.

Add a RAM Test Controller
The RAM test controller contains two streaming command interfaces; write_command and
read_command, that send commands to the pattern reader and pattern writer components. These
streaming interfaces issue commands effectively because Avalon-ST interfaces offer low latency and a
simple handshaking protocol, as well as because the processor accesses a slave port, csr, to write
commands to the controller.

1. In the IP Catalog, double-click RAM Test Controller from the Memory Test Microcores group.
2. In the parameter editor, click Finish to accept the default parameters.
3. Rename the instance to ram_test_controller.
4. Set the ram_test_controller clock to clk_0.
5. Connect the ram_test_controller write_command interface to the pattern_writer_command

interface.
6. Connect the ram_test_controller read_command interface to the pattern_reader_command

interface.
7. Connect the ram_test_controller csr interface to the mm_bridge m0 interface.

Do not use the Generation tab at this point in the tutorial to generate HDL code for these subsystems. You
must generate files for the entire top-level system, which includes all the subsystems. The batch script
provided for you to program the device requires that only one system is generated in the project directory.
The top-level design includes a Nios II subsystem, and the Nios II software build tools require the SOPC
Information File (.sopcinfo) to be generated for the top-level design. If there are multiple .sopcinfo files,
the batch script to program the device fails with an error from the software build tools.

Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the Messages tab. Qsys
allows multiple reset domains, or one reset signal for the system. In the design, you want to connect all the
reset signals with the incoming reset signal. To connect all the reset signals, on the System menu, select
Create Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you have any error
messages in the Messages tab, review the procedures to create this system to ensure you did not miss a
step. You can view the reset connections and the timing adapters on the System Contents tab, and by
selecting Show System With Qsys Interconnect on the System menu.

16 Add a RAM Test Controller
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Verify the Memory Address Map

To ensure that the memory map of the system you create matches the memory map of other components,
you must verify the base addresses for the memory tester system. In Qsys, on the Address Map tab, verify
that the entries in Address Map table match the values in Table 3. Red exclamation marks indicate that
the address ranges overlap. Correct the base addresses, as appropriate, to ensure there are no overlapping
addresses.

Table 3: Address Map Table

Component Base Address Address

mm_bridge_0.s0 N/A N/A

pattern_generator_subsystem.slave 0x0 0x00000000 – 0x000007ff

pattern_checker_subsystem.slave 0x1000 0x0001000 – 0x000017ff

ram_test_controller.csr 0x800 0x00000800 – 0x0000081f

Save the System

At this point, there should be no remaining error messages in the Messages tab, and the system is
complete. Save the system.

Complete the Top-Level System
1. In Qsys, open the top_system.qsys file from the tt_qsys_design\quartus_ii_projects_for_boards\<develop‐

ment_board> directory.
The top-level system is set up for your development board, with an external clock source, a processor
system, and an SDRAM controller. You can view the clocks in top-level system on the Clock Settings
tab, and the partially-completed system connections on the System Contents tab.

2. In the IP Catalog, double-click memory_tester_system from the System group.
3. Click Finish to accept the default parameters, and to add the memory tester system to the top-level

system.
4. Rename the system to memory_tester_subsystem.
5. On the System Contents tab, use the arrows to move the memory_tester_subsystem up between the

cpu_subsystem and the sdram.
Since the cpu_subsystem controls the memory_tester_subsystem, and the
memory_tester_subsystem controls the sdram, this positioning allows you to more easily visualize
system performance.

6. Set the memory_tester_subsystem clk to either the sdram_sysclk (for ALTMEMPHY-based designs),
or sdram_afi_clk (for UniPHY-based designs).
Some boards have an FPGA and SDRAM device that use either the Altera DDR or DDR2 SDRAM
Controller with ALTMEMPHY; others use the Altera DDR3 SDRAM controller with UniPHY.

7. Connect the memory_tester_subsystem reset interface to the ext_clk clk_reset interface.
8. Connect the memory_tester_subsystem reset interface to the cpu_subsystem cpu_jtag_debug_reset

interface.
This design exports the Nios II processor JTAG debug reset output interface,
jtag_debug_module_reset, from the cpu_subsystem with the interface name cpu_ jtag_debug_reset.
The design must connect this Nios II reset output to any component reset inputs that require resetting

TU-01006
2015.05.04 Verify the Memory Address Map 17

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


by the Nios II processor code or JTAG interface, and also to the Nios II processor's reset input
interface. The cpu_subsystem cpu_reset interface connects to the Nios II processor's reset input
interface. The top_level.qsys file connects the cpu_jtag_debug_reset interface to the cpu_reset
interface.

9. Connect the memory_tester_subsystem write_master and read_master interfaces to either the
sdram s1 interface (for ALTMEMPHY-based designs), or sdram avl interface (for UniPHY-based
designs).

10.Connect the memory_tester_subsystem slave interface to the cpu_subsystem master interface.
11.Maintain the base addresses of 0x0 for the memory_tester_subsystem slave interface, and for either

the sdram s1 interface (for ALTMEMPHY-based designs), or sdram avl interface (for UniPHY-based
designs).

The two slave interfaces can use the same address map range because different masters control them. The
cpu_subsystem master interface controls the memory_tester_subsystem, and the
memory_tester_subsystem write_master and read_master interfaces control the sdram interface.

Viewing the Memory Tester System in Qsys
You can use the Hierarchy tab, accessed from the View menu, to show the complete hierarchy of your
design. The Hierarchy tab is a full system hierarchical navigator, which expands the system contents to
show modules, interfaces, signals, contents of subsystems, and connections. The graphical interface of the
Hierarchy tab displays a unique icon for each element represented in the system, including interfaces,
directional pins, IP blocks, and system icons that show exported interfaces and the instances of
components that make up a system.

Click Generate > HDL Example to view the HDL for an example instantiation of the system. The HDL
example lists the signals from the exported interfaces in the system. The signal names are the exported
interface name followed by an underscore, and then the signal name specified in the component or IP
core. Most of the signals connect to the external SDRAM device.

Compiling and Downloading Software to a Development Board

Before you begin

Altera recommends that you download the memory tester system to a development board to complete the
design process and test the memory interface of the board. If you do not have a development board you
can follow the steps provided in the accompanying readme.txt file to learn more details about porting
designs to FPGA devices or boards.

The Altera-provided software tests the memory using various test parameters and patterns, and is scripted
for compilation and download to the board.

1. To download the top-level system to a development board, in Qsys, click Generate > Generate.
2. Select the language for Create HDL design files for synthesis, and turn off the option to create a Block

Symbol File (.bsf).
3. Click Generate. Qsys generates HDL files for the system and the Quartus II IP File (.qip) that provides

the list of required HDL files for the Quartus II compilation.
4. When Qsys completes the generation, click Close.

18 Viewing the Memory Tester System in Qsys
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5. In the Quartus II software, on the Project menu, click Add/Remove Files in Project and verify that the
newly-generated .qip file, top_system.qip, and the timing constraints file, my_constraints.sdc appear
in the Files list.

6. Click Processing > Start Compilation. When compilation completes, click OK.
7. Connect the development board to a supported programming cable.
8. Click Tools > Nios II Command Shell [gcc4].
9. Type the following command to emulate your local c:/ drive for your Windows environment: cd /

cygdrive/c/.
10.Navigate to the quartus_ii_projects_for_boards\<development_board>\software directory.
11.Type the following command at the Nios II command Shell: ./batch_script.sh.

The batch script compiles the Nios II software and downloads the SRAM Object File (.sof) program‐
ming file to the FPGA.

The terminal window shows messages indicating the progress. If you see error messages related to the
JTAG chain, check your programming cable installation and board setup to ensure that it is set up
correctly.

After the script configures the FPGA, it downloads the compiled Nios II software to the board and
establishes a terminal connection with the board. The test software performs test sweeps on the SDRAM
by varying the following parameters:

• Pattern type
• Memory block size
• Memory block trail distance (number of blocks by which the pattern reader trails the pattern writer)
• Memory span tested

Ensure that you have only one set of generated system files in the project directory, otherwise the batch
script to program the device fails with an error from the software build tools.

The memory throughput values appear in the command terminal as the memory is tested. These values
are reported in hexadecimal and represent the number of clock cycles required to test the entire SDRAM
address span. The output is restricted to hexadecimal due to a small software library that prints the
characters to the terminal. Because the memory tester system writes to the memory and then reads it back,
the number of bytes it accesses and reports in the transcript window is double the memory span. This
number varies depending on the span of memory being tested for your memory device. Knowing the data
width of the memory interface, the number of bytes transferred, and the number of clock cycles for the
transfer, you can determine the memory access efficiency.

The SDRAM controller in the top-level Qsys system has a 32-bit local interface width, therefore memory
data width in bytes is 4 bytes for the tutorial design.

Efficiency = 100 × total bytes transferred/(memory data width in bytes × total 
clock cycles)

The memory test runs until the design finishes testing the complete memory. To end the test early, type
Ctrl+C in the command window. To calculate the efficiency for the last throughput numbers in, convert
the hexadecimal numbers to decimal, as follows:

• 0x4000000 bytes transferred is 0d67108864 total bytes transferred
• 0x107d856 clock cycles is 0d17291350 total clock cycles

Therefore, the efficiency for this example is:

100 × 67108864 / (4 × 17291350) = 97.0%

TU-01006
2015.05.04 Compiling and Downloading Software to a Development Board 19

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information
Download and Install the Tutorial Design Files on page 3

Debugging Your Design
If the memory test starts but does not complete successfully, the terminal displays failure messages. If you
see failure messages from the memory test, review the previous sections and check that you have
completed all of the instructions in this tutorial successfully. A missed connection or incorrect memory
address assignment may cause the tester design to fail on the board.

Altera provides completed systems, so that you can verify your system designs. You can copy the
completed systems into the project directory with different names, so that you can open two different
instances of Qsys for a side-by-side comparison. Alternatively, you can replace your systems with the
provided completed systems to run the memory tester design successfully.

Related Information
Download and Install the Tutorial Design Files on page 3

Verifying Hardware in System Console
You can use the Quartus II System Console to verify your system design. The design example files include
scripts that exercise your system using System Console Tcl commands. The example uses a JTAG-to-
Avalon Master Bridge component to drive the slave components, instead of a Nios II processor system.

The \quartus_ii_projects_for_boards\<development_board>\system_console directory contains the
run_sweep.tcl, base_address.tcl, and test_cases.tcl scripts. You use these scripts to set up and run
memory tests on the development board projects. You can view the scripts to help you understand the
System Console commands that drive the slave component registers. The scripts work with any board, if
you keep the same Qsys system structure.

The run_sweep.tcl file is the main script, which calls the other two scripts. The base_address.tcl file includes
information about the base addresses of the slave components from the previous chapters. If you change
the base addresses of the slave components, you must also change the addresses in the base_address.tcl file.
The test_cases.tcl file includes settings for memory span, memory block sizes, and memory block trail
distance.

The run_sweep.tcl file contains Tcl commands for the following actions:

• Initialize the components
• Adjust test parameters
• Start the PRBS pattern checker, PRBS pattern generator, and RAM controller
• Continuously poll the stop and fail bits in the PRBS checker

Related Information
Download and Install the Tutorial Design Files on page 3

Open the Tutorial Project
You can use completed design files in the tt_qsys_design\quartus_ii_projects_for_boards\<development_board>
directory.

20 Debugging Your Design
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. Open the Quartus II project in the project directory for your development board type.
2. In Qsys, open top_system.qsys in the project directory for your development board type.

Add the JTAG-to-Avalon Master Bridge
The JTAG-to-Avalon master bridge acts as a bridge between the JTAG interface and the system's memory
tester.

1. In the IP Catalog select JTAG to Avalon Master Bridge, and then click Add.
2. In the parameter editor, click Finish to accept the default parameters.
3. Rename the instance to jtag_to_avalon_bridge.
4. Connect the jtag_to_avalon_bridge master interface to the memory_tester_subsystem slave

interface.
5. Set the jtag_to_avalon_bridge clk domain to sdram_sysclk.
6. Connect the jtag_avalon_bridge clk_reset interface to the ext_clk clk_reset interface.
7. Connect the jtag_avalon_bridge clk_reset interface to either the sdram reset_request_n interface (for

ALTMEMPHY-based designs), or sdram afi_reset interface (for UniPHY-based designs).
8. Connect the jtag_avalon_bridge master_reset interface to the memory_tester_subsystem reset

interface, and to either the sdram soft_reset_n interface (for ALTMEMPHY-based designs), or sdram
soft_reset interface (for UniPHY-based designs).

9. To disable the cpu_subsystem system, in the Use column, turn off Use, since you are replacing its
function with the bridge and System Console.

10.Save the jtag_to_avalon_bridge system.

Debug with System Console
The design example scripts test the memory in loops for different block sizes, that is, the number of bytes
to group together in a single instance of back-to-back reads or writes. The scripts also test the memory in
loops for different memory block trails, that is, the number of blocks by which the pattern reader trails the
pattern writer.

1. To download the programming file to your development board, in Qsys, click Generate > Generate.
2. Select the language for Create HDL design files for synthesis.
3. Click Generate. Qsys generates HDL files for the system and the .qip file, which provides the list of

required HDL files for the Quartus II compilation.
4. When Qsys completes the generation, click Close.
5. In the Quartus II software, click Project > Add/Remove Files in Project, and verify that the project

contains the top_system.qip.
6. Click Processing > Start Compilation. When compilation completes, click OK.
7. Connect the development board to a supported programming cable.
8. Click Tools > Programmer.
9. Check that the Programmer displays the correct programming hardware. Otherwise, click Hardware

Setup and select the correct programming hardware, and then click Close.
10.To program the device, click Start.

TU-01006
2015.05.04 Add the JTAG-to-Avalon Master Bridge 21

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


11.In Qsys, click Tools > System Console.
12.Before you execute scripts in System Console, navigate to the directory for the Tcl scripts, and then in

Qsys System Console window, click File > Execute Script.
13.To start the memory tests, run the run_sweep.tcl file from the tt_qsys_design\quartus_ii_projects_for_

boards\<development_board> \system_console directory.
When you run the run_sweep.tcl script, the System Console displays the progress of the tests in the
Messages tab. The tests perform test sweeps on the SDRAM by varying the memory block size and
memory block trail distance. When the tests finish successfully, Qsys generates a message that reports
successful completion.

Simulating Custom Components
You can simulate a custom component with Qsys and the Avalon Verification IP Suite. You use Qsys to
generate a testbench system for the design under test, and then perform a functional simulation with the
ModelSim-Altera simulator. The Qsys-generated testbench uses the Avalon Verification IP Suite
components.

Figure 4: Typical Qsys Test Environment

Avalon
Verification

Suite
DUTTest Program

Testbench

Test 
Parameters

Test Stimuli

Generate a Testbench System in Qsys
The custom pattern generator generates high-speed streaming data for testing memory devices. The soft-
programmable custom pattern generator can generate multiple test patterns, and is programmed with the
pattern data and pattern length. When the end of the pattern is reached, the custom pattern generator
cycles back to the first element of the pattern.

22 Simulating Custom Components
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


If you do not want to use the Qsys-generated testbench system, you can create your own Qsys testbench
system by adding the Avalon Verification Suite Bus Functional Models (BFMs) or your own models for
simulation. You can also generate a Qsys simulation model for the design or Qsys system under test, and
use your own custom HDL testbench to provide the simulation stimulus.

Related Information
Download and Install the Tutorial Design Files on page 3

Create a New Qsys System for the Design Under Test

1. In the Quartus II software, open the Quartus II Project File, qsys_sim_tutorial.qpf, from the
\simulation_tutorial directory.

2. In Qsys, click File > New System to create a new Qsys design.
3. To remove the clock source, which is not needed for this design, right-click clk_0, and then click

Remove.
4. In the IP Catalog, select Custom Pattern Generator from the Memory Test Microcores group, and

then click Add.
5. In the parameter editor, click Finish to accept the default parameters.
6. Rename the instance to pg to provide a short instance name for the pattern generator.

Export Design Under Test

1. In Qsys, on the System Contents tab, in the Export column, for each interface click Double-click to
export, and maintain the default export names.

2. Save the system as pattern_generator.

Generate a Testbench System

1. In Qsys click Generate > Generate Testbench System.
2. Under Testbench System, for Create testbench Qsys system, select Standard, BFMs for standard

Qsys interfaces.
3. Under Synthesis, select None for Create HDL design files for synthesis, and turn off Create block

symbol file (.bsf).
4. Click Generate.
5. After Qsys generates the testbench, click Close.

Qsys generates this testbench system in the \simulation_tutorial\pattern_generator\testbench directory.

You can generate the simulation model for the Qsys testbench system at the same time by turning on
Create testbench simulation model. However, the Qsys-generated testbench system's components names
are assigned automatically and you may want to control the instance names to make it easier to run the
test program for the BFMs. In this tutorial, you edit the Qsys testbench system before generating the
simulation model.

Generate Testbench System's Simulation Models
In this section, you open the generated Qsys testbench system and rename the BFM component instance
names to ensure the testbench names match the test program provided with the tutorial design files.
Additionally, you generate the testbench's simulation model.

TU-01006
2015.05.04 Create a New Qsys System for the Design Under Test 23

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


1. In Qsys, open the testbench system, pattern_generator_tb.qsys, from the simulation_tutorial\pattern_
generator\testbench directory.

2. On the System Contents tab, rename the instance as they appear in Table 5–1.
Qsys-Generated Components' Names New Instance Name

pattern_generator_inst DUT

pattern_generator_inst_pg_clock_bfm clock_source

pattern_generator_inst_pg_reset_bfm reset_source

pattern_generator_inst_pg_csr_bfm csr_master

pattern_generator_inst_pg_pattern_access_bfm pattern_master

pattern_generator_inst_pg_pattern_output_bfm pattern_sink

3. Double-click a BFM component to open the parameter editor and view its settings. These BFM
components are available in the Avalon Verification Suite group in the library. If necessary, you can
change the parameters for the BFMs to ensure adequate test coverage for your design.
The Qsys-generated testbench matches inserted BFMs with the exported interfaces from the design
that they drive. The test program that provides stimulus to the BFMs must account for the matching
interface. For example, an exported Avalon-MM slave interface (which expects word-aligned
addresses) is connected to an Avalon master BFM, which expects and transacts word-aligned addresses
instead of the byte or symbol addresses that are default for Avalon masters.

4. Click Cancel to close the parameter editor without making changes.
5. In the Generation dialog box, under Simulation, for Create simulation model, select Verilog.
6. Under Testbench System, select None for Create testbench Qsys system and Create testbench

simulation model.
7. Under Synthesis, select None for Create HDL design files for synthesis, and turn off Create Block

design files (.bsf).
8. Save the system.
9. Click Generate.
10.After Qsys generates the testbench, click Close.

Qsys generates the testbench system’s simulation models in the \simulation_tutorial\pattern_generator
\testbench\pattern_generator_tb\simulation directory.

Qsys generates the simulation models and a ModelSim simulation script (msim_setup.tcl), which
compiles the required files for simulation and sets up commands to load the simulation in the ModelSim
simulator. You can run this ModelSim script in ModelSim-Altera to compile, elaborate, or load for
simulation.

In this tutorial, there is an external test program to provide simulation stimulus. The tutorial design files
include a simulation script, load_sim.tcl that compiles the top-level simulation file and test program, and
calls the Qsys-generated script to compile the required files.

Run Simulation In the ModelSim-Altera Software
You can run a simulation in the ModelSim-Altera software on the testbench that you created. To
complete this simulation you use the test program provided in the design files. The test begins by writing
a walking ones pattern to the design under test.

24 Run Simulation In the ModelSim-Altera Software
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


This test program performs the following actions:

• Reads a pattern file.
• Writes the pattern to the design under test via the pattern master BFM.
• Sets various design under test options via the CSR master BFM.
• Starts the design under test pattern generation.
• Collects data generated by the design under test.
• Compares the results against the original pattern file.

Set Up the Simulation Environment
This tutorial includes test program files that you can use with the Qsys-generated testbench and
ModelSim simulation script. To learn more about Qsys simulation support, open and review the
simulation script, \simulation_tutorial\load_sim.tcl. After your review of the script, close the script
without making changes.

The load_sim.tcl script sets simulation variables to set up the correct hierarchical paths in the Qsys-
generated simulation model and ModelSim script. Additionally, the script identifies the top-level instance
name for the simulation and provides the path to the location of the Qsys-generated files. Some functions,
such as memory initialization, rely on correct hierarchical paths names in the simulation model.

The load_sim.tcl script performs the following actions:

• Sources the Qsys-generated ModelSim simulation script, msim_setup.tcl.
• Uses the command aliases defined in the msim_setup.tcl script to compile and elaborate the files for

the Qsys testbench simulation model.
• Compiles and elaborates the extra simulation files for the tutorial—the test program and top-level

simulation file that instantiates the test program.
• Loads the wave.do file that provides signals for the ModelSim waveform view.

Run the Simulation

1. Start the ModelSim-Altera software.
2. Click File > Change Directory, browse to the \simulation_tutorial directory, and then click OK.
3. Click Compile > Compile Options.
4. Click the Verilog & SystemVerilog tab, select Use SystemVerilog, and then click OK.
5. Click File > Load

Ensure you activate the ModelSim-Altera Transcript window, otherwise the Load function is disabled.
6. Select the load_sim.tcl script, and then click Open.

The warning messages relate to unused connections in an ALTSYNCRAM megafunction. Because
these ports are not used, you can ignore the warning messages.

7. Run the simulation for 40us. To run the simulation, in the ModelSim-Altera Transcript window type
the following command: run 40us.
You can run the h command to show the available options for the msim_setup.tcl script.

8. Observe the results.

INFO: top.tb.reset_source.reset_deassert: Reset deasserted
INFO: top.pgm: Starting test walking_ones.hex
INFO: top.pgm.read_file: Read file walking_ones.hex success
INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test walking_ones.hex passed

TU-01006
2015.05.04 Set Up the Simulation Environment 25

Qsys System Design Tutorial Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


9. To run the low frequency test, modify \simulation_tutorial\test_include.svh according to Table 4.

Table 4: Values for Low Frequency Pattern Test

Macro New Value

PATTERN_POSITION 0

NUM_OF_PATTERN 2

NUM_OF_PAYLOAD_BYTES 256

FILENAME low_freq.hex

FILENAME_REV low_freq_rev.hex

10.Reload the load_sim.tcl script, run the simulation for 40us, and observe the result in the Transcript
window.

INFO: top.pgm: Starting test low_freq.hex
INFO: top.pgm.read_file: Read file low_freq.hex success
INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test low_freq.hex passed

11.To run the random number pattern test, modify \simulation_tutorial\test_include.svh according to 
Table 5.

Table 5: Values for Random Number Pattern Test

Macro New Value

PATTERN_POSITION 32

NUM_OF_PATTERN 64

NUM_OF_PAYLOAD_BYTES 1024

FILENAME random_num.hex

FILENAME_REV random_num_rev.hex

12.Reload the load_sim.tcl script, and run the simulation for 40us to observe the following results.

INFO: top.pgm: Starting test random_num.hex
INFO: top.pgm.read_file: Read file random_num.hex success
INFO: top.pgm.read_file: Read file random_num_rev.hex success
INFO: top.pgm: Test random_num.hex passed

View a Diagram of the Completed System
You set up the simulation environment for the custom pattern generator component and used BFM test
code to perform simulation. You can test your own custom Qsys components with this method to verify
their functionality before you integrate them into a complete system. You can also create a testbench
system for a complete Qsys system with this method, and test your top-level system behavior with BFMs.

On the Qsys Tutorial Design Example page, click detailed diagram under Block Diagram to view a
detailed diagram of the completed Memory Tester System.

26 View a Diagram of the Completed System
TU-01006

2015.05.04

Altera Corporation Qsys System Design Tutorial

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

• Qsys Tutorial Design Example
• Detailed Diagram of the Memory Tester System

TU-01006
2015.05.04 View a Diagram of the Completed System 27

Qsys System Design Tutorial Altera Corporation

Send Feedback

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/images/qsys_diagram_memory_tester_system.jpg
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Tutorial%20(TU-01006%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Qsys System Design Tutorial
	Software and Hardware Requirements
	Download and Install the Tutorial Design Files
	Open the Tutorial Project
	Creating Qsys Systems
	Create a Data Pattern Generator Qsys System
	Create a New Qsys System and Set up the Clock Source
	Add a Pipeline Bridge
	Add a Custom Pattern Generator
	Add a PRBS Pattern Generator
	Add a Two-to-One Streaming Multiplexer
	Verify the Memory Address Map
	Connect the Reset Signals
	Save the System

	Create a Data Pattern Checker Qsys System
	Create a New Qsys System and Set Up the Clock Soource
	Add a Pipeline Bridge
	Add a Custom Pattern Checker
	Add the PRBS Pattern Checker
	Add a One-to-Two Streaming Demultiplexer
	Verify the Memory Address Map
	Connect the Reset Signals
	Save the System


	Assemble a Hierarchical System
	Create the Hierarchical Memory Tester System
	Add the Pattern Generator
	Add the Pattern Checker
	Add Memory Master Components
	Add a Pattern Writer Component
	Add a Pattern Reader Component
	Add a RAM Test Controller

	Connect the Reset Signals
	Verify the Memory Address Map
	Save the System

	Complete the Top-Level System

	Viewing the Memory Tester System in Qsys
	Compiling and Downloading Software to a Development Board
	Debugging Your Design
	Verifying Hardware in System Console
	Open the Tutorial Project
	Add the JTAG-to-Avalon Master Bridge
	Debug with System Console

	Simulating Custom Components
	Generate a Testbench System in Qsys
	Create a New Qsys System for the Design Under Test
	Export Design Under Test
	Generate a Testbench System
	Generate Testbench System's Simulation Models

	Run Simulation In the ModelSim-Altera Software
	Set Up the Simulation Environment
	Run the Simulation


	View a Diagram of the Completed System


