
101 Innovation Drive
San Jose, CA 95134
www.altera.com

TU-01006

Tutorial

Qsys System Design

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
April 2011

Subscribe

Qsys System Design Tutorial

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=TU-01006

Qsys System Design Tutorial April 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

April 2011 Altera Corporation
Contents
Chapter 1. Introduction
Software and Hardware Requirements . 1–1
Overview . 1–2

Downloading and Installing the Design Example Files . 1–3
Opening the Tutorial Project . 1–4

Chapter 2. Creating Qsys Systems
Creating the Data Pattern Generator . 2–1

Creating a New Qsys System with a Clock Source . 2–1
Adding a Pipeline Bridge . 2–2
Adding a Custom Pattern Generator . 2–3
Adding a PRBS Pattern Generator . 2–4
Adding a Two-to-One Streaming Multiplexer . 2–4
Verifying the Memory Address Map . 2–5
Connecting the Reset Signals and Inserting Adapters . 2–5

Creating the Data Pattern Checker . 2–6
Creating a New Qsys System and Setting Up the Clock Source . 2–6
Adding a Pipeline Bridge . 2–6
Adding a One-to-Two Streaming Demultiplexer . 2–7
Add a Custom Pattern Checker . 2–7
Add the PRBS Pattern Checker . 2–8
Verify the Memory Address Map . 2–8
Connecting the Reset Signals . 2–8

Chapter 3. Assembling Hierarchical Systems
Creating the Hierarchical Memory Tester . 3–2

Adding the Data Pattern Generator . 3–4
Adding the Pattern Checker . 3–4
Adding the Memory Master Components . 3–5
Connecting the Reset Signals . 3–7
Specifying the Memory Address Map . 3–7

Completing the Top-Level System . 3–7
Compiling and Downloading Software to a Development Board . 3–9

Chapter 4. Verifying Hardware in System Console
Understanding the Scripts . 4–1
Opening the Tutorial Project . 4–1
Adding the JTAG-to-Avalon Master Bridge . 4–2
Compiling and Using System Console with a Development Board . 4–3

Chapter 5. Simulating Custom Components
Generating a Testbench System in Qsys . 5–1

Opening the Tutorial Project . 5–1
Creating a New Qsys System for the Design Under Test . 5–2
Exporting All Design Under Test Interfaces . 5–2
Generating a Qsys Testbench System . 5–2
Generate Qsys Testbench System's Simulation Models . 5–3

Running Simulation In the ModelSim-Altera Software . 5–4
Qsys System Design Tutorial

iv Contents
Setting Up the Simulation Environment . 5–4
Running the Simulation . 5–5

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
1. Introduction
This tutorial introduces you to the Qsys system integration tool available with the
Quartus® II software. This tutorial shows you how to design a system that uses
various test patterns to test an external memory device. This tutorial guides you
through system requirement analysis, hardware design tasks, and evaluation of the
system performance, with emphasis on architecting the system. Upon completion you
understand the Qsys development flow, and you can design your own systems.

Software and Hardware Requirements
This tutorial requires the following software:

■ Altera® Quartus II software version 11.0 or later.

f For system requirements and installation instructions, refer to Altera
Software Installation and Licensing.

■ Nios® II EDS version 11.0 or later.

■ tt_qsys_design.zip design example files, available from the Qsys Tutorial Design
Example web page. The design example files include project files set up for select
Altera development boards.

You can build the system in this tutorial for any Altera development board or your
own custom board if it meets the following requirements:

■ The board must have an Altera Arria®, Cyclone®, or Stratix® series FPGA.

■ The FPGA must contain a minimum of 12 K logic elements (LEs) or adaptive
lookup tables (ALUTs).

■ The FPGA must contain a minimum of 150 Kbits of embedded memory.

■ The board must have a JTAG connection to the FPGA that provides a
communications link back to the host so that you can monitor the memory test
progress.

■ The board must contain a memory that the design tests. For example, any memory
that has a Qsys-based controller with an Avalon® Memory-Mapped (Avalon-MM)
slave interface.

To complete this tutorial for development boards other than those already set up with
the design example files, refer to the board documentation for the clock frequencies
and pin-out descriptions. For Altera development boards, you can find this
information in the relevant reference manual. Altera provides hardware projects with
porting steps for various other development boards.
Qsys System Design Tutorial

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–2 Chapter 1: Introduction
Overview
Overview
The Qsys system you build in this tutorial tests a synchronous dynamic random
access memory (SDRAM). The final system contains the SDRAM controller, and
instantiates a Nios II processor and some embedded peripherals in a hierarchical
subsystem. You complete the Qsys system by adding various Qsys components that
generate test data, access memory, and verify the returned data.

The final system contains the following components:

■ Processor subsystem based on the Nios II/e core (included with the Altera
Complete Design Suite)

■ SDRAM controller (included with the Altera Complete Design Suite)

■ Pseudo-random binary sequence (PRBS) pattern generator and checker

■ Custom pattern generator and checker

■ Pattern select multiplexer and demultiplexer

■ Pattern writer and reader

■ Memory test controller

You can use this final system on hardware without a license. With Altera's free
OpenCore Plus evaluation feature, you can perform the following actions:

■ Simulate the behavior of the system and verify its functionality

■ Generate time-limited device programming files for your designs

■ Program a device and verify your design in hardware

The design example files comprise components that are free to use in any design. The
Nios II 'e' processor core and the DDR SDRAM IP core are free to use with a Quartus II
subscription license. The design files for different development kit boards use
different DDR SDRAM controllers, to match the memory device available on the
development kit.

■ For more information about OpenCore Plus, refer to the AN320: OpenCore Plus
Evaluation of Megafunctions.
Qsys System Design Tutorial April 2011 Altera Corporation

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Chapter 1: Introduction 1–3
Overview
Figure 1–1 shows the complete top-level system of the design example. Figure 1–1
shows the components in the memory tester system as one Qsys system, with the
three major design functions grouped with dotted lines. This tutorial shows using
hierarchy—instantiating the data pattern generator and data pattern checker
components into separate systems, which you then include in the memory tester
system. Hierarchy allows you to instantiate a system as a component in a higher-level
system.

Downloading and Installing the Design Example Files
To download and install the design example files for the tutorial, follow these steps:

1. Download the Qsys Tutorial Design Example (.zip) files from the Qsys Tutorial
Design Example web page.

Figure 1–1. Top-Level System Architecture

Qsys System

Memory Tester

Data Pattern Generator Memory Master and Controller Data Pattern Checker

Processor
IP Cores

SDRAM
Controller

SDRAM
Under Test

Custom
Pattern

Generator

PRBS
Generator

Pattern
Select
(MUX)

Pattern Writer
Checker
Select

(DEMUX)

Test Controller PRBS
Checker

Custom
Pattern
Checker

Nios II

Onchip
RAM
(Code

and Data)

Avalon-MM Interface

Avalon-ST Interface

Pattern Reader

Pipeline
Bridge

JTAG
UART
April 2011 Altera Corporation Qsys System Design Tutorial

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/examples/download/tt_qsys_design.zip

1–4 Chapter 1: Introduction
Overview
2. Extract the contents of the archive file to a directory on your computer. Do not use
spaces in the directory path name.

Opening the Tutorial Project
The design example files for this tutorial provide the required custom IP design
blocks and project files to use as a starting point and include a partially completed
Quartus II project and Qsys system. The design example files include the following
complete projects:

■ Assigned Quartus II project I/O pin assignments and specified Synopsys Design
Constraints (.sdc) timing assignments.

■ Parameterized Nios II processor core to communicate with the host PC that
controls the memory test system you develop.

■ Parameterized DDR SDRAM controller to use the memory on the development
board.

To open the tutorial project, follow these steps:

1. Open the Quartus II software.

2. Open the Quartus II Project File (.qpf) for your board:

a. On the File menu, click Open Project.

b. Browse to the
tt_qsys_design\quartus_ii_projects_for_boards\<development_board>\
directory.

c. Select the relevant board-specific .qpf file, and click Open.

The custom memory test components for the design are Verilog HDL components
with an accompanying Hardware Component Description File (_hw.tcl) that
describes the interfaces and parameterization of each component. These files are in
the tt_qsys_design\memory_tester_ip directory. To view these components in Qsys,
on the Component Library tab expand Memory Test Microcores. An IP Index (.ipx)
file provides a reference to the memory_tester_ip directory that contains these
memory test components.
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
2. Creating Qsys Systems
This chapter shows you how to instantiate, parameterize, and connect components to
create Qsys systems.

In this chapter you create Qsys systems for the following design blocks that
Figure 1–1 on page 1–3 shows:

■ Data pattern generator

■ Data pattern checker

1 If you are familiar with the procedure for creating Qsys systems, you may skip this
chapter and go to Chapter 3, Assembling Hierarchical Systems. The tutorial design
files include the completed systems from this chapter.

The data pattern checker generates high-speed streaming data, which performs either
as a PRBS or as a soft programmable sequence, for example, “walking ones”. The
design sends the data with an Avalon-Streaming (Avalon-ST) connection to the
pattern writer of the memory master and control logic.

The data pattern generator writes the data to memory based on commands issued to it
by the controller logic. When the design writes the data to memory, the pattern reader
logic reads the contents back and send them to the data pattern verification logic.

The data pattern checker accepts the data read back by the pattern reader from an
Avalon-ST connection. The design verifies the data pattern to ensure that the pattern it
writes to memory is identical to the data that it reads back.

1 As you add components and make connections in the system, error and warning
messages in the Qsys Messages tab indicate steps that you must perform before the
system is compete. Some of the error messages are not resolved immediately, and are
resolved in later steps of the procedures.

Creating the Data Pattern Generator
In this section, you create a data pattern generator system, which includes two
components to generate test patterns and a third component to multiplex the data that
a processor controls.You configure the data pattern generator to match the width of
the memory interface. Because the data pattern generator can provide a full word of
data every clock cycle, configuring the components to match the memory width
provides sufficient bandwidth to access the memory rapidly.

1 Before you create this Qsys system, ensure you download and install the tutorial files
and open the Quartus II project (“Downloading and Installing the Design Example
Files” on page 1–3 and “Opening the Tutorial Project” on page 1–4)

Creating a New Qsys System with a Clock Source
To create a new Qsys system and set up the clock source, follow these steps:
Qsys System Design Tutorial

2–2 Chapter 2: Creating Qsys Systems
Creating the Data Pattern Generator
1. In the Quartus II software, on the Tools menu, click Qsys.

2. In Qsys, on the File menu, click New System. Qsys opens and displays a new
empty system. In the System Contents tab, Qsys shows a clock source instance,
clk_0.

3. To open the clock source settings, right-click clk_0 and click Edit or double-click
on the instance.

4. Turn off Clock frequency is known to indicate that, when created, the higher-level
hierarchical system that instantiates this subsystem provides the clock frequency.

5. Click Finish.

6. Save and name the system:

a. On the File menu, click Save As.

b. Type file name pattern_generator_system and click Save. Ensure you use the
exact system name described in these steps, because the tutorial scripts are
configured to use this name.

Adding a Pipeline Bridge
The components that make up this system include several Avalon-MM slave
interfaces. To allow a higher-level system to access all the Avalon-MM slave interfaces
by reading and writing to a single slave interface, you consolidate the slave interfaces
behind an Avalon-MM pipeline bridge and export a single Avalon-MM slave interface
out of this system. The bridge also adds a level of pipelining, which can improve
timing performance. To add the pipeline bridge, follow these steps:

1. On the Component Library tab, expand Bridges and Adapters, and then expand
Memory Mapped. Alternatively, you can type bridge in the search box to filter the
list and show only the bridge components. You should click X next to the search
box, to clear the search filtering.

2. Click Avalon-MM Pipeline Bridge component and click Add. Alternatively, you
can double-click on Avalon-MM Pipeline Bridge. The parameter editor opens.

3. In the parameter editor, for the Address width enter 11 to accommodate the span
of the memory-mapped components in this system.

4. Click Finish. The default bridge is added to your system with the instance name
mm_bridge_0.

5. Set the mm_bridge_0 clock domain to clk_0:

■ In the Clock column for the mm_bridge_0 clk interface, select clk_0 from the
drop-down list.

■ Alternatively, you can make the connection in the Connections column. Click
to fill in the connection dot between the clk_0 clk output and the
mm_bridge_0 clk input.

■ Alternatively, you can right-click on mm_bridge_0 clk input, point to
mm_bridge_0.clk Connections, and select clk_0.clk.

6. Export the mm_bridge_0 s0 interface with the name slave. Click in the Export
column and type slave.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 2: Creating Qsys Systems 2–3
Creating the Data Pattern Generator
Adding a Custom Pattern Generator
You can configure the custom pattern generator to generate multiple test patterns. The
component is programmed with the pattern data and a pattern length. When the end
of the pattern is reached the custom pattern generator cycles back to the first element
of the pattern. This component generates the following patterns:

■ Walking ones

■ Walking zeros

■ Low frequency

■ Alternating low frequency

■ High frequency

■ Alternating high frequency

■ Synchronous PRBS

The synchronous PRBS pattern is the longest pattern containing 256 elements before
repeating. The width of the memory dictates the walking ones or zeros pattern
lengths. For example, when testing a 32-bit memory the walking ones or zeros pattern
is 32 elements in length before repeating. The high and low frequency patterns
contain only two elements before repeating.

This custom pattern generator contains three interfaces, two of which control the
generated pattern. The interface controls the behavior of the custom pattern
generated. The processor accesses the pattern_access interface, which is write only,
to program the elements of the custom pattern that are sent to the pattern writer core.
The st_pattern_output is the streaming source interface that sends data to the
pattern writer core. To add the custom pattern generator, follow these steps:

1. On the Component Library tab, under Project expand Memory Test Microcores,
and double-click Custom Pattern Generator. The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. On the System Contents tab, rename the instance to custom_pattern_generator:

a. In the Name column, right-click on custom_pattern_generator_0, and select
Rename.

b. Remove the _0 characters from the name.

4. Set the custom_pattern_generator clock domain to clk_0.

5. Connect the custom_pattern_generator csr interface to the mm_bridge_0 m0
interface:

■ In the Connections, column click to fill in the connection dot between the
custom_pattern_generator csr interface and the mm_bridge_0 m0 interface.

■ Alternatively, you can right-click on customer_pattern_generator.csr
interface, point to customer_pattern_generator.csr Connections, and
mm_bridge_0.m0.

6. Connect the custom_pattern_generator pattern_access interfaces to the
mm_bridge_0 m0 interface.
April 2011 Altera Corporation Qsys System Design Tutorial

2–4 Chapter 2: Creating Qsys Systems
Creating the Data Pattern Generator
7. Assign the custom_pattern_generator csr interface to a base address of 0400:

a. In the Base column, double-click on the address 0x00000000.

b. Enter 400 for the base address, which is in hexadecimal format.

1 You assign a base address just higher than the end address of the
pattern_access interface to avoid conflicting with the address space of the
pattern_access interface

8. Keep the assignment of the custom_pattern_generator pattern_access interface
to a base address of 0000.

Adding a PRBS Pattern Generator
The output of the PRBS pattern generator is a statically-defined PRBS pattern. You can
specify the pattern length before the pattern repeats in the parameter editor. The
pattern length is defined by 2^(data width) – 1. For example, a 32-bit PRBS pattern
generator repeats the pattern after it sends 4,294,967,295 elements. You set the width
of the PRBS generator based on the (local) data width of the memory on your board.

The PRBS pattern generator has two interfaces. The csr interface controls the
behavior of the PRBS pattern generated. The st_pattern_output streaming source
interface sends data to the pattern writer component. To add the PRBS pattern
generator, follow these steps:

1. Double-click PRBS Pattern Generator from the Memory Test Microcores group.
The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. Rename the instance to prbs_pattern_generator.

4. Set the prbs_pattern_generator clock domain to clk_0.

5. Connect the prbs_pattern_generator csr interface to the mm_bridge_0 m0
interface.

6. Assign the prbs_pattern_generator csr interface to a base address of 0x0420
(which is a base address just higher than the end address of the
custom_pattern_generator csr interface at base address 0x0400).

Adding a Two-to-One Streaming Multiplexer
Because the system has two pattern sources, and the pattern writer component
accepts data only from one streaming source, you add a two-to-one streaming
multiplexer between the pattern generators and the pattern writer. The two-to-one
streaming soft programmable multiplexer IP core allows the processor to select which
pattern to send to the pattern writer component. The component has the following
interfaces:

■ Two streaming inputs: st_input_A and st_input_B.

■ One streaming output: st_output.

■ One csr slave interface, which the processor controls to select whether input A or
input B is sent to the streaming output.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 2: Creating Qsys Systems 2–5
Creating the Data Pattern Generator
The custom pattern generator connects to the A input; the PRBS pattern generator
connects to the B input. To add the two-to-one streaming multiplexer, follow these
steps:

1. Double-click Two-to-one Streaming Mux from the Memory Test Microcores
group. The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. Rename the instance to two_to_one_st_mux.

4. Set the two_to_one_st_mux clock domain to clk_0.

5. Connect the two_to_one_st_mux st_input_A interface to the
custom_pattern_generator st_pattern_output interface.

6. Connect the two_to_one_st_mux st_input_B interface to the
prbs_pattern_generator st_pattern_output interface.

7. Connect the two_to_one_st_mux csr interface to the mm_bridge_0 m0 interface.

8. Export the two_to_one_st_mux st_output interface with the name st_data_out.

9. Assign the two_to_one_st_mux csr interface to a base address of 0x0440 (which is
a base address just higher than the end address of the prbs_pattern_generator csr
interface at base address 0x0420).

Verifying the Memory Address Map
To ensure that the memory map of the system you create matches the memory map
that other sections of the tutorial use, verify the base addresses in the system. Click
the Address Map tab, and confirm the entries in your table match the values in
Table 2–1. Any red exclamation marks indicate that the address ranges overlap.
Correct the address maps to ensure there are no overlapping addresses, and your map
matches this tutorial’s guidelines.

Connecting the Reset Signals and Inserting Adapters
You must connect all the reset signals, which eliminates some of the error messages in
the Messages tab. Qsys allows multiple reset domains, or one reset signal for the
system. In this design, you want to connect all the reset signals with the incoming
reset signal, so that you can use the Qsys autoconnect feature. To connect all the reset
signals together, on the System menu, select Create Global Reset Network.

Table 2–1. Address Map

Component Address

custom_pattern_generator.csr 0x00000400 – 0x0000040f

custom_pattern_generator.pattern_access 0x00000000 – 0x000003ff

prbs_pattern_generator.csr 0x00000420 – 0x0000043f

two_to_one_st_mux.csr 0x00000440 – 0x00000447
April 2011 Altera Corporation Qsys System Design Tutorial

2–6 Chapter 2: Creating Qsys Systems
Creating the Data Pattern Checker
The remaining error messages on the Messages tab relate to the ready latency
mismatches between the pattern generators and the multiplexers. To eliminate the
mismatch between the streaming source and sink timing characteristics, on the
System menu select Insert Avalon-ST Adapters, so that Qsys automatically inserts
streaming timing adapters into the appropriate datapaths.

Qsys shows no remaining error or warning messages. If you have any error messages
in the Messages tab, review the procedures to create this system to ensure you did not
miss a step. You can view the reset connections and the timing adapters on the System
Contents tab.

Save the system. On the File menu, click Save.

Now you have a system that includes the data pattern generator for the design
(Figure 1–1 on page 1–3). The output of the two-to-one streaming multiplexer carries
the pattern data from either the custom pattern generator or the PRBS pattern
generator to the pattern writer in the full system. The data, from the output of the
two-to-one streaming multiplexer, achieves a throughput of one word per clock cycle.

Creating the Data Pattern Checker
In this section you create the data pattern checker system, which is very similar to the
data pattern generator system. The system reads back the pattern from the SDRAM
and sends it to the pattern checker to verify it against the pattern from the data
pattern generator. The pattern reader sends the data to a one-to-two streaming
demultiplexer that routes the data to either the custom pattern checker or the PRBS
pattern checker. The one-to-two streaming demultiplexer is soft programmable so that
the processor can select which pattern checker IP core should verify the data that the
pattern reader reads. The custom pattern checker is also soft programmable and is
configured to match the same pattern as the custom pattern generator.

Creating a New Qsys System and Setting Up the Clock Source
To create a new Qsys system and set up the clock source, follow these steps:

1. On the File menu, click New System. Qsys opens and displays a new empty
system. On the System Contents tab, Qsys shows a clock source instance, clk_0.

2. Double-click on the instance to edit the clock source settings.

3. Turn off Clock frequency is known to indicate that, when created, the higher-level
hierarchical system that instantiates this subsystem provides the clock frequency.

4. Click Finish.

5. Save the pattern checker system:

a. On the File menu, click Save As.

b. Type file name pattern_checker_system and click Save.

Adding a Pipeline Bridge
To add a pipeline bridge that consolidates the slave interfaces, follow these steps:

1. On the Component Library tab, expand Bridges and Adapters, and then expand
Memory Mapped.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 2: Creating Qsys Systems 2–7
Creating the Data Pattern Checker
2. Click Avalon-MM Pipeline Bridge component and click Add. The parameter
editor opens.

3. In the parameter editor, for the Address width enter 11 to accommodate the span
of the memory-mapped components in this system.

4. Click Finish. The default instance name is mm_bridge_0.

5. Set the mm_bridge_0 clock domain to clk_0.

6. Export the mm_bridge_0 s0 interface with the name slave.

Adding a One-to-Two Streaming Demultiplexer
The one-to-two streaming demultiplexer performs the opposite operation of the two-
to-one streaming multiplexer. It has a streaming input interface, st_input, that
accepts data from the pattern reader and it has two streaming output interfaces,
st_output_A and st_output_B, that connect to the custom pattern generator and
PRBS pattern generator. To allow the processor to program the route the data takes
through the component, the system includes a slave interface, csr. To add the one-to-
two streaming demultiplexer, follow these steps:

1. Double-click One-to-two Streaming Demux from the Memory Test Microcores
group. The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. On the System Contents tab, rename the instance to one_to_two_st_demux.

4. Set the one_to_two_st_demux clock domain to clk_0.

5. Export the one_to_two_st_demux st_input interface with the name st_data_in.

6. Connect the one_to_two_st_demux csr interface to the mm_bridge_0 m0 interface.

7. Assign the one_to_two_st_demux csr interface to a base address of 0x0400.

Add a Custom Pattern Checker
The custom pattern checker performs the opposite operation of the custom pattern
generator. It has a streaming input interface, st_pattern_input, that accepts data
from the one-to-two streaming demultiplexer. It has an Avalon-MM slave interface,
csr, that the processor uses to control the component. It also has a memory mapped
slave interface, pattern_access, that the processor uses to program the same
patterns as the custom pattern generator component. To add the custom pattern
checker, follow these steps:

1. Double-click Custom Pattern Checker from the Memory Test Microcores group.
The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. Rename the instance to custom_pattern_checker.

4. Set the custom_pattern_checker clock domain to clk_0.

5. Connect the custom_pattern_checker csr and pattern_access interfaces to the
mm_bridge_0 m0 interface.
April 2011 Altera Corporation Qsys System Design Tutorial

2–8 Chapter 2: Creating Qsys Systems
Creating the Data Pattern Checker
6. Connect the custom_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_A interface.

7. Assign the custom_pattern_checker csr interface to a base address of 0x0420.

8. Assign the custom_pattern_checker pattern_access interface to a base address of
0x0000.

Add the PRBS Pattern Checker
The PRBS pattern checker performs the opposite operation of the PRBS pattern
generator. It has a memory mapped slave interface, csr, that the processor accesses to
control the component. It also has a streaming input, st_pattern_input, that accepts
data from the one-to-two streaming demultiplexer. To add the PRBS pattern checker,
follow these steps:

1. Double-click PRBS Pattern Checker from the Memory Test Microcores group.
The parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. Rename the instance to prbs_pattern_checker.

4. Set the prbs_pattern_checker clock domain to clk_0.

5. Connect the prbs_pattern_checker csr interface to the mm_bridge_0 m0 interface.

6. Connect the prbs_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_B interface.

7. Assign the prbs_pattern_checker csr interface to a base address of 0x0440.

Verify the Memory Address Map
To ensure that the memory map of the system you create matches the memory map
that other sections of the tutorial use, verify the base addresses in the system. Click
the Address Map tab, and confirm the entries in your table match the values in
Table 2–2.

Connecting the Reset Signals
You must connect all the reset signals. To connect all the reset signals together, on the
System menu, select Create Global Reset Network.

Qsys shows no remaining error or warning messages. If you have any error messages
in the Messages tab, review the procedures to create this system to ensure you did not
miss a step. You can view the reset connections and the timing adapters on the System
Contents tab.

Table 2–2. Address Map

Component Address

one_to_two_st_demux.csr 0x00000400 - 0x00000407

custom_pattern_checker.csr 0x00000420 - 0x0000042f

custom_pattern_checker.pattern_access 0x00000000 - 0x000003ff

prbs_pattern_checker.csr 0x00000440 - 0x0000045f
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 2: Creating Qsys Systems 2–9
Creating the Data Pattern Checker
Save the system. On the File menu, click Save.

Now you have a system that verifies the data it reads back from memory. The top-
level system sends the data from the pattern reader component via a streaming
interface. The data enters the one-to-two streaming demultiplexer, which then routes
it to either the custom pattern checker or the PRBS pattern checker.

The lower-level subsystems for the memory tester design are complete. You can now
move on to Chapter 3, Assembling Hierarchical Systems to use these systems in a
hierarchical system design.
April 2011 Altera Corporation Qsys System Design Tutorial

2–10 Chapter 2: Creating Qsys Systems
Creating the Data Pattern Checker
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
3. Assembling Hierarchical Systems
This tutorial describes hierarchical system design in Qsys. Hierarchical systems allow
you to create reusable modular system components and also allow you to easily
visualize large systems, by breaking large systems into smaller subsystems.

This tutorial uses the systems from Chapter 2, Creating Qsys Systems (or the
completed versions of the systems provided with the design files) as hierarchical
subsystems in a memory tester system You then instantiate the memory tester system
in the top-level system, which also includes a processor system and an SDRAM
controller. Figure 3–1 shows the high-level interfaces in the top-level system.

Figure 3–1. System High-level Interfaces

Qsys System

Memory Tester

Processor
IP Cores

SDRAM
Controller

Avalon-MM Master

Avalon-ST Slave

M

S

M

M

S

S

M

SDRAM
Under Test
Qsys System Design Tutorial

3–2 Chapter 3: Assembling Hierarchical Systems
Creating the Hierarchical Memory Tester
Creating the Hierarchical Memory Tester
Figure 3–2 shows the memory tester interfaces.

As Figure 3–2 shows, the memory tester includes the following Qsys subsystems,
which you created in Chapter 2, Creating Qsys Systems:

■ A data pattern generator—generates and transmits Avalon-ST data to the memory
master components.

■ A data pattern checker—receives and verifies Avalon-ST data from the memory
master components.

If you skipped chapter 2, follow these steps to set up your Quartus II project:

1. Download and install the tutorial files (refer to “Downloading and Installing the
Design Example Files” on page 1–3).

2. Copy the two completed systems (pattern_checker_system.qsys, and
patter_generator_system.qsys) from the tt_qsys_design\completed_subsystems
directory into the appropriate
tt_qsys_design\quartus_ii_projects_for_boards\<development_board> directory
for your board.

3. Open the Quartus II project for your development board (refer to “Opening the
Tutorial Project” on page 1–4).

4. In the Quartus II software, on the Tools menu, click Qsys.

To create the memory tester, follow these steps:

Figure 3–2. Hierarchical Memory Tester Interfaces

Pipeline
Bridge

Avalon-MM Master

Avalon-MM Slave

M

S

M

M

S

Avalon-ST Source

Avalon-ST Sink

Sr

Sk

M

Pattern Checker
Subsystem

S

SkSk

S

Pattern Generator
Subsystem

S

Sr Sr

SrSr

Pattern Writer

RAM Test
Controller

Memory Master
Components

SkSk

Pattern Reader

Avalon-MM Interface

Avalon-ST Interface
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 3: Assembling Hierarchical Systems 3–3
Creating the Hierarchical Memory Tester
1. In Qsys, on the File menu, click New System. Qsys opens and displays a new
empty system. In the System Contents tab, Qsys shows a clock source instance,
clk_0.

2. To open the clock source settings, right-click clk_0 and click Edit or double-click
on the instance.

3. Turn off Clock frequency is known to indicate that, when created, the higher-level
hierarchical system that instantiates this subsystem provides the clock frequency.

4. Click Finish.

5. Save the system:

a. On the File menu, click Save As.

b. Type file name memory_tester_system and click Save.

The memory tester includes several Avalon-MM slave interfaces. However, the
memory tester groups them behind an Avalon-MM pipeline bridge that exports a
single Avalon-MM slave interface to the top-level system. This technique allows the
top-level system to access all the memory-mapped slave ports by reading and writing
to a single pipeline bridge slave interface. The bridge also adds a level of pipelining,
which can improve timing performance. To add the pipeline bridge, follow these
steps:

1. On the Component Library tab, expand Bridges and Adapters, and then expand
Memory Mapped. Alternatively, you can type bridge in the search box to filter the
list and show only the bridge components. You should click X next to the search
box, to clear the search filtering.

2. Click Avalon-MM Pipeline Bridge component and click Add. Alternatively, you
can double-click on Avalon-MM Pipeline Bridge. The parameter editor opens.

3. In the parameter editor, for the Address width enter 13 to accommodate the span
of the memory-mapped components in this system.

4. Click Finish. The default instance name is mm_bridge_0.

5. On the System Contents tab, set the mm_bridge_0 clock domain to clk_0:

■ In the Clock column for the mm_bridge_0 clk interface, select clk_0 from the
drop-down list.

■ Alternatively, you can make the connection in the Connections column. Click
to fill in the connection dot between the clk_0 clk output and the
mm_bridge_0 clk input.

■ Alternatively, you can right-click on mm_bridge_0 clk input, point to
mm_bridge_0.clk Connections, and select clk_0.clk.

6. Export the mm_bridge_0 s0 interface with the name slave: click in the Export
column and type slave.
April 2011 Altera Corporation Qsys System Design Tutorial

3–4 Chapter 3: Assembling Hierarchical Systems
Creating the Hierarchical Memory Tester
Adding the Data Pattern Generator
The data pattern generator system from Chapter 2, Creating Qsys Systems provides a
stream of pattern data via an Avalon-ST source interface. You control the system by
accessing the memory locations allocated to each component within the subsystem.
The system connect all slave ports to a pipeline bridge, which it then exposes outside
of the system. The system contains the following components:

■ Pipeline bridge

■ Custom pattern generator

■ PRBS pattern generator

■ Two-to-one streaming multiplexer

■ Streaming timing adapters

To add the data pattern generator to the memory tester, follow these steps:

1. On the Component Library tab, under Project expand System, double-click
pattern_generator_system. The parameter editor appears.

2. Click Finish.

3. Rename the instance to pattern_generator_subsystem.

a. In the Name column, right-click on system_0, and select Rename.

b. Enter pattern_generator_subsystem for the instance name.

4. Set the pattern_generator_subsystem clock domain to clk_0.

5. Connect the pattern_generator_subsystem slave interface to the mm_bridge_0 m0
interface.

6. Connect the pattern_generator_subsystem reset interface to the clk_0 clk_reset
interface.

1 Because the reset interface is exported to reset_0, you cannot right click on the
interface to make the connection. You must make the connection in the Connections
column. Click to fill in the connection dot between pattern_generator_subsystem
reset interface to the clk_0 clk_reset interface.

Adding the Pattern Checker
The pattern checker system from Chapter 2, Creating Qsys Systems validates data
that arrives via an Avalon-ST sink interface. You control the system by accessing the
memory locations allocated to each component within the subsystem. The system
connect all of the slave ports to a pipeline bridge, which it then exposes outside of the
system. The system contains the following components:

■ Pipeline bridge

■ Custom pattern checker

■ PRBS pattern checker

■ One-to-two demultiplexer

To add the data pattern checker to the memory tester, follow these steps:
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 3: Assembling Hierarchical Systems 3–5
Creating the Hierarchical Memory Tester
1. Double-click pattern_checker_system from the System group.

2. Click Finish.

3. Rename the instance to pattern_checker_subsystem.

4. Set the pattern_checker_subsystem clock domain to clk_0.

5. Connect the pattern_checker_subsystem slave interface to the mm_bridge_0 m0
interface.

6. Connect the pattern_checker_subsystem reset interface to the clk_0 clk_reset
interface.

Adding the Memory Master Components
In this section you add the memory masters and the RAM test controller. Memory
masters access the SDRAM controller by writing the test pattern to the memory and
reading the pattern back for validation. The RAM test controller accepts commands
from the processor and controls the memory masters. Each command contains
information such as a start address, test length in bytes, and memory block size in
bytes. The RAM test controller segments the commands into smaller block transfers
and issues them to the read and write masters independently via streaming
connections.

When the pattern reader or writer components complete a block transfer, they signal
to the RAM test controller that they are ready for another command. The RAM test
controller issues the block-sized commands independently, which minimizes the
number of idle cycles between memory transfers. The RAM test controller also
ensures that the pattern reader never overtakes the pattern writer with respect to the
memory locations it is testing, otherwise data corruption occurs.

The SDRAM controller in this design is parameterized to use a local maximum burst
length of 2. The pattern reader and writer components are also configured to match
this burst length to maximize the memory bandwidth.

Adding a Pattern Writer Component
The pattern writer component accepts memory transfer commands from the RAM test
controller with the command streaming interface. The st_data streaming interface
accepts data provided by the design’s pattern generator. The mm_data memory-
mapped interface writes the pattern data to the SDRAM controller. To add the pattern
writer component to the system, follow these steps:

1. Double-click Pattern Writer core from the Memory Test Microcores group. The
parameter editor appears.

2. Turn on Burst Enable support.

3. Ensure the Maximum Burst Count is 2.

4. Make sure that Enable Burst Re-alignment is turned on.

5. To accept the other default parameters, click Finish in the parameter editor.

6. Rename the instance to pattern_writer.

7. Set the pattern_writer clock domain to clk_0.
April 2011 Altera Corporation Qsys System Design Tutorial

3–6 Chapter 3: Assembling Hierarchical Systems
Creating the Hierarchical Memory Tester
8. Connect the pattern_writer st_data interface to the pattern_generator_subsystem
st_data_out interface.

9. Export the pattern_writer mm_data interface with the name write_master.

Adding a Pattern Reader Component
The pattern reader component accepts memory transfer commands from the RAM
test controller with the command streaming interface. The mm_data Avalon-MM
interface reads the pattern data from the SDRAM controller. The st_data Avalon-ST
interface sends the data read from memory to the design’s pattern checker. To add the
pattern reader component to the system, follow these steps:

1. Double-click Pattern Reader core from the Memory Test Microcores group. The
parameter editor appears.

2. Turn on Burst Enable support.

3. Ensure the Maximum Burst Count is 2.

4. Make sure that Enable Burst Re-alignment is turned on.

5. To accept the other default parameters, click Finish in the parameter editor.

6. Rename the instance to pattern_reader.

7. Set the pattern_reader clock domain to clk_0.

8. Connect the pattern_reader st_data interface to the pattern_checker_subsystem
st_data_in interface.

9. Export the pattern_reader mm_data interface with the name read_master.

Adding a RAM Test Controller
The RAM test controller contains two interfaces that send commands to the pattern
reader and writer components. The two streaming command interfaces are
write_command and read_command. These streaming interfaces issue commands
effectively because Avalon-ST interfaces offer low latency and a simple handshaking
protocol. Also the processor accesses a slave port, csr, to write commands to the
controller.

To add the RAM test controller to the system, follow these steps:

1. Double-click RAM Test Controller from the Memory Test Microcores group. The
parameter editor appears.

2. To accept the default parameters, click Finish in the parameter editor.

3. On the System Contents tab, rename the instance to ram_test_controller.

4. Set the ram_test_controller clock domain to clk_0.

5. Connect the ram_test_controller write_command interface to the pattern_writer
command interface.

6. Connect the ram_test_controller read_command interface to the pattern_reader
command interface.

7. Connect the ram_test_controller csr interface to the mm_bridge_0 m0 interface.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 3: Assembling Hierarchical Systems 3–7
Completing the Top-Level System
1 Do not use the Generation tab at this point in the tutorial to generate HDL code for
these subsystems, because you must only generate files for the entire top-level system,
which includes all the subsystems. The batch script provided for you to program the
device requires that only one system is generated in the project directory. The top-
level design includes a Nios II subsystem, and the Nios II software build tools require
the .sopcinfo file to be generated for the top-level design. If there are multiple
.sopcinfo files, the batch script to program the device fails with an error from the
software build tools.

Connecting the Reset Signals
You must connect all the reset signals. On the System menu, select Create Global
Reset Network.

Specifying the Memory Address Map
In this section, you use the Address Map tab to set the addresses in the memory map
of the system to ensure it matches the memory map that other sections of the tutorial
use. To set the base addresses, follow these steps:

1. Click the Address Map tab. Red exclamation marks indicate overlapping
addresses, because all of the slave address maps currently start at address 0x0.

2. Double-click next to each interface in the mm_bridge_0.m0 column, so that Qsys
replaces the address range in the cell with a base address that you can edit. Delete
the current address, refer to Table 3–1, and type the correct base address.

3. When you click out of the cell, Qsys displays the resulting address range. Confirm
the resulting address range in your table matches the values in Table 3–1.

There are now no remaining error or warning messages. Save the memory tester
system.

Completing the Top-Level System
This section describes how to complete top-level system. To add the memory tester
system to complete the top-level system, follow these steps:

1. In Qsys, open the top_system.qsys file from the
tt_qsys_design\quartus_ii_projects_for_boards\<development_board> directory.

2. This system is set up for your development board, with an external clock source, a
processor system, and an SDRAM controller. You can view the clocks in this top-
level system on the Clock Settings tab. You can view the partially-completed
system connections in the System Contents tab.

Table 3–1. Memory Tester Address Map

Component Name Base Address Resulting Address Range

mm_bridge_0.s0 N/A N/A

pattern_generator_subsystem.slave 0x0 0x00000000 – 0x000007ff

pattern_checker_subsystem.slave 0x1000 0x0001000 – 0x000017ff

ram_test_controller.scsr 0x800 0x00000800 – 0x0000081f
April 2011 Altera Corporation Qsys System Design Tutorial

3–8 Chapter 3: Assembling Hierarchical Systems
Completing the Top-Level System
3. Double-click memory_tester_system from the System group.

4. Click Finish. The memory tester system is added to the top-level system.

5. On the System Contents tab, rename the system to memory_tester_subsystem.

6. On the System Contents tab move the memory_test_subsystem up between the
cpu_subsystem and the sdram. The cpu_subsystem controls the
memory_tester_subsystem, which controls the sdram, so performing this move
helps you to visualize the system easier. Select the memory_test_subsystem and
click the up arrow once.

7. Set the memory_tester_subsystem clock domain to:

■ sdram_sysclk for ALTMEMPHY-based designs

■ sdram_afi_clk for UniPHY-based designs

1 Some boards have an FPGA and SDRAM device that use either the Altera
DDR or DDR2 SDRAM Controller with ALTMEMPHY; others use the
Altera DDR3 SDRAM controller with UniPHY.

8. Connect the memory_tester_subsystem reset interface to the ext_clk clk_reset
interface and the cpu_subsystem cpu_jtag_debug_reset interface.

1 This design exports the Nios II processor JTAG debug reset output interface,
jtag_debug_module_reset, from the cpu_subsystem with the interface name cpu_
jtag_debug_reset. The design must connect this Nios II reset output to any
component reset inputs that require resetting by the Nios II processor code or JTAG
interface, and also to the Nios II processor's reset input interface. The cpu_subsystem
cpu_reset interface connects to the Nios II processor's reset input interface. The
top_level.qsys file connects the cpu_jtag_debug_reset interface to the cpu_reset
interface.

9. Connect the memory_tester_subsystem write_master and read_master
interfaces to the:

■ sdram s1 interface for ALTMEMPHY-based designs

■ sdram avl interface for UniPHY-based designs

10. Connect the memory_tester_subsystem slave interface to the cpu_subsystem
master interface.

11. Keep the base addresses to 0x0 for the memory_tester_subsystem slave interface
and the:

■ sdram s1 interface for ALTMEMPHY-based designs

■ sdram avl interface for UniPHY-based designs.

1 The two slave interfaces can use the same address map range because
different masters control them. The cpu_subsystem master interface
controls the memory test subsystem, and the memory_tester_subsystem
write_master and read_master interfaces control the sdram interface.

The design is complete. If you have any error messages in the Messages tab, review
the procedures to create this system to ensure you did not miss a step.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 3: Assembling Hierarchical Systems 3–9
Compiling and Downloading Software to a Development Board
Save the system. Optionally, you can click on the following tabs:

■ The System Inspector tab shows the hierarchical system. The default view shows
the project settings for the top-level system. Expand Submodules to view
information about the lower-level systems and components.

■ The HDL Example tab shows the input and output signals of the Qsys system.
This tab displays the HDL for an example instantiation of this system in an HDL
file, and lists all the signals from the exported interfaces in the system. The signal
names are the exported interface name followed by an underscore and then the
signal name specified in the component or IP core. In this case, most of the signals
connect to the external SDRAM device under test.

■ The Generation tab allows you to generate design files from Qsys. You can also
compile the hardware design in the Quartus II software after the generation is
complete and download the image and software to the board (“Compiling and
Downloading Software to a Development Board” on page 3–9).

Compiling and Downloading Software to a Development Board
Altera recommends you download the system and software to a development board
to complete the design process and test the memory interface of the board. If you do
not have a development board you can follow the steps provided in the
accompanying readme.txt file to learn more details about porting designs to other
FPGA devices or boards.

The Altera-provided software tests the memory using various test parameters and
patterns. The software is scripted for compilation and download to the board. To
download the top-level system to a development board, follow these steps:

1. In Qsys, click the Generation tab.

2. Ensure that you turn on Create HDL design files for synthesis. This step does not
require any of the other options.

3. Click Generate. Qsys generates HDL files for the system and the Quartus IP File
(.qip) that provides the list of required HDL files for the Quartus II compilation.

4. When Qsys completes the generation, click Close. You can also close Qsys.

5. In the Quartus II software, on the Project menu, click Add/Remove Files in Project
and verify that project includes the .qip file for this system. The project also
includes the top-level Verilog HDL wrapper file top_level.v that instantiates the
top_system.qsys system, and the SDC timing constraint file my_constraints.sdc.

6. On the Processing menu, click Start Compilation.

7. Connect the development board to a supported programming cable.

8. Open a Linux or Nios II command shell. In Qsys, on the Tools menu, click Nios II
Command Shell [gcc4]. Alternatively, on Windows, open the Nios II Command
Shell. On the Start menu, point to Altera, point to Nios II EDS, and click Nios II
EDS Command Shell. For Linux, open a Linux terminal.

9. Navigate to the quartus_ii_projects_for_boards\<development_board>\software
directory.

10. When compilation completes, click OK.
April 2011 Altera Corporation Qsys System Design Tutorial

3–10 Chapter 3: Assembling Hierarchical Systems
Compiling and Downloading Software to a Development Board
11. Type the following command at the Nios II command Shell or Linux terminal

./batch_script.sh.

The batch script compiles the Nios II software and downloads the .sof programming
file into the FPGA.

After the script configures the FPGA, it downloads the compiled Nios II software to
the board and establishes a terminal connection with the board. The test software
performs test sweeps on the SDRAM by varying the following parameters:

■ Pattern type

■ Memory block size

■ Memory block trail distance (number of blocks by which the pattern reader trails
the pattern writer)

■ Memory span tested

1 Ensure that you do not have multiple sets of generated system files in the project
directory, which produce multiple .sopcinfo files, otherwise the batch script to
program the device fails with an error from the software build tools.

The memory throughput values appear in the command terminal as the memory is
tested. These values are reported in hexadecimal and represent the number of clock
cycles required to test the entire SDRAM address span. The output is restricted to
hexadecimal due to a very small software library that prints the characters to the
terminal. Because the memory tester system writes to the memory and then reads it
back, the number of bytes it accesses and reports in the transcript window is double
the memory span. This number varies depending on the span of memory being tested
for your memory device. Knowing the data width of the memory interface, the
number of bytes transferred, and the number of clock cycles for the transfer, you can
determine the memory access efficiency (Equation 3–1).

1 The SDRAM controller in the top-level Qsys system has a 32-bit local interface width,
therefore memory data width in bytes in Equation 3–1 is 4 bytes for the tutorial design.

Equation 3–1. Equation to Calculate Memory Efficiency

Efficiency = 100 × total bytes transferred/(memory data width in bytes × total clock cycles)
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 3: Assembling Hierarchical Systems 3–11
Compiling and Downloading Software to a Development Board
Figure 3–3 shows example output in the command window.

The test runs until the design finishes testing the full memory. To end the test early,
type Ctrl+C in the command window.

To calculate the efficiency for the last throughput numbers in Figure 3–3, convert the
hexadecimal numbers to decimal. Thus:

0x4000000 bytes transferred is 0d67108864 total bytes transferred.

0x107d856 clock cycles is 0d17291350 total clock cycles.

Therefore the efficiency for this example is:

100 × 67108864 / (4 × 17291350) = 97.0%.

If the memory test starts but does not complete successfully, the terminal displays
failure messages. If you see failure messages from the memory test, review the
previous sections and check that you have completed all the instructions in this
tutorial successfully. A missed connection or incorrect memory address assignment
may cause the tester design to fail on the board. Altera provide completed systems, so
that you can check your results. You can copy the completed systems into the project
directory with a different name, so that you can open them side-by-side with your
systems for comparison. Alternatively, you can replace your systems with the
provided completed systems to run the memory tester design successfully. The
completed systems are in the following directories:

■ tt_qsys_design\completed_subsystems\pattern_checker_system.qsys

■ tt_qsys_design\completed_subsystems\pattern_generator_system.qsys

■ tt_qsys_design\completed_subsystems\completed_memory_tester_system
\memory_tester_system.qsys

■ \tt_qsys_design\quartus_ii_projects_for_boards\<development_board>
\backup_and_completed_top_system\completed_top_system\top_system.qsys

Figure 3–3. Sample Output from Terminal
April 2011 Altera Corporation Qsys System Design Tutorial

3–12 Chapter 3: Assembling Hierarchical Systems
Compiling and Downloading Software to a Development Board
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
4. Verifying Hardware in System Console
This tutorial shows you how to use System Console available in the Quartus II
software to verify your system design. The design example files include scripts that
exercise your system via System Console Tcl commands. The system is similar to the
system in Chapter 3, Assembling Hierarchical Systems; however, this system uses a
JTAG-to-Avalon Master Bridge component to drive all the slave components, instead
of a Nios II processor system.

Understanding the Scripts
The \quartus_ii_projects_for_boards\<development_board>\system_console
directory contains the run_sweep.tcl, base_address.tcl, and test_cases.tcl scripts. You
use these scripts to set up and run the memory tests on the various provided
development board projects. You can view the scripts to help you understand the
System Console commands that drive the slave component registers. The scripts work
with any board, if you keep the same Qsys system structure.

The run_sweep.tcl file is the main script, which calls the other two scripts. The
base_address.tcl file includes all the information about the base addresses of the slave
components that the previous chapters use. If you change the base addresses of the
slave components, you must also change them in the base_address.tcl file. The
test_cases.tcl file includes settings for memory span, memory block sizes, and
memory block trails.

The run_sweep.tcl file contains System Console Tcl commands for the following
actions:

■ Initialize the components

■ Adjust test parameters

■ Start the PRBS pattern checker, PRBS pattern generator, and RAM controller

■ Continuously poll the stop and fail bits in the PRBS checker

Opening the Tutorial Project
If you did not complete Chapter 3, Assembling Hierarchical Systems, to set up your
Quartus II project, follow these steps:

1. Download and install the tutorial design files (refer to “Downloading and
Installing the Design Example Files” on page 1–3).
Qsys System Design Tutorial

4–2 Chapter 4: Verifying Hardware in System Console
Adding the JTAG-to-Avalon Master Bridge
2. Copy the following completed systems to the appropriate
tt_qsys_design\quartus_ii_projects_for_boards\<development_board> directory
for your board:

■ The two completed systems pattern_checker_system.qsys, and
patter_generator_system.qsys from the
tt_qsys_design\completed_subsystems directory.

■ The completed system memory_tester_system.qsys from the
tt_qsys_design\completed_subsystems\completed_memory_tester_system
directory.

■ The completed top-level system top-system.qsys from the
tt_qsys_design\quartus_ii_projects_for_boards\<development_board>\backu
p_and_completed_top_system\completed_top_system directory.

1 You can learn how to build these systems in Chapter 2, Creating Qsys
Systems and Chapter 3, Assembling Hierarchical Systems.

3. Open the Quartus II project for your development board (refer to “Opening the
Tutorial Project” on page 1–4).

To open the top-level Qsys file, follow these steps:

1. On the Tools menu, click Qsys.

2. On the Qsys File menu, open the top_system.qsys file in the project directory.

Adding the JTAG-to-Avalon Master Bridge
The JTAG-to-Avalon master bridge acts as a bridge between the JTAG interface and
the system's memory tester. To add this bridge to the top-level system, follow these
steps:

1. On the Component Library tab, expand Bridges and Adapters, and then expand
Memory Mapped.

2. Click JTAG to Avalon Master Bridge component and click Add. The parameter
editor opens.

3. To accept the default parameters, click Finish in the parameter editor.

4. On the System Contents tab, rename the instance to jtag_to_avalon_bridge.

5. Connect the jtag_to_avalon_bridge master interface to the
memory_tester_subsystem slave interface.

6. Set the jtag_to_avalon_bridge clock domain to sdram_sysclk.

7. Connect the jtag_avalon_bridge clk_reset interface to the ext_clk clk_reset
interface and the:

■ sdram reset_request_n interface for ALTMEMPHY-based designs

■ sdram afi_reset interface for UniPHY-based designs
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 4: Verifying Hardware in System Console 4–3
Compiling and Using System Console with a Development Board
8. Connect the jtag_avalon_bridge master_reset interface to the
memory_tester_subsystem reset interface and the:

■ sdram soft_reset_n interface for ALTMEMPHY-based designs

■ sdram soft_reset interface for UniPHY-based designs

9. Disable the cpu_subsystem to remove it from the system, because you are
replacing its function with the bridge and System Console. In the Use column,
turn off Use.

10. On the File menu, click Save.

Compiling and Using System Console with a Development Board
The design example scripts test the memory in loops for different block sizes, that is,
the number of bytes to group together in a single instance of back-to-back reads or
writes. The scripts also test the memory in loops for different memory block trails,
that is, the number of blocks by which the pattern reader trails the pattern writer. To
download the programming file to your development board, follow these steps:

1. In Qsys, click the Generation tab.

2. Ensure that you turn on Create HDL design files for synthesis. This step does not
require any of the other options.

3. Click Generate. Qsys generates HDL files for the system and the Quartus IP File
(.qip) that provides the list of required HDL files for the Quartus II compilation.

4. When Qsys completes the generation, click Close.

5. In the Quartus II software, on the Project menu, click Add/Remove Files in
Project, and verify that the project contains the top_system.qip file for this system.

6. On the Processing menu, click Start Compilation.

7. Connect the development board to a supported programming cable.

8. On the Tools menu, click Programmer.

9. Check that the Programmer displays the correct programming hardware.
Otherwise, click Hardware Setup and select the correct programming hardware,
then click Close.

10. When the Quartus II software competes the compilation, click OK.

11. Program the device, by clicking Start.

12. In Qsys, on the Tools menu, click System Console.

13. Before you execute any scripts in System Console, you must be in the directory
that has the Tcl scripts. In the Tcl Console window type the following command to
change the directory:

cd system_console

14. On the File menu, click Execute Script.
April 2011 Altera Corporation Qsys System Design Tutorial

4–4 Chapter 4: Verifying Hardware in System Console
Compiling and Using System Console with a Development Board
15. To start the memory tests, run the run_sweep.tcl file from the
tt_qsys_design\quartus_ii_projects_for_boards\<development_board>
\system_console directory. Table 4–1 shows the tasks that the run_sweep.tcl
script runs via System Console.

After running the run_sweep.tcl script, the System Console displays the progress of
the tests in the Messages window. The tests perform test sweeps on the SDRAM by
varying the memory block size and memory block trail distance. When the tests finish
correctly, the Tcl console displays the following message:

.... All tests have finished without any Failures ...

Table 4–1. run_sweep.tcl Script Tasks

Script Task Description

Initialize components

1. Switches the multiplexer and demultiplexer over to input/output B by
accessing the csr slave interface.

2. Writes to the PRBS generator core and PRBS check core csr slave
interface and performs the following tasks:

a. Disables the infinite payload size.

b. Writes a payload size equal to the memory span of the design.

3. Writes the following to the RAM test controller csr slave interface:

a. RAM base address for the start of the test.

b. Transfer length equal to the memory span of the design.

c. Concurrent read/write enable, which determines if the read and write
accesses to the memory blocks should be concurrent. Disabling this
setting provides the highest throughput but does not test switching
between reads and writes.

Adjust test parameters
■ Writes various block sizes within a loop.

■ Writes various block trails within a loop.

Start the test

1. Writes the start bit to the PRBS generator core csr slave interface.

2. Writes the start bit to the PRBS checker core csr slave interface.

3. Writes to the start bit of the RAM controller csr interface.

Continuously polls the
stop and fail bits of
PRBS checker

1. Polling the PRBS checker core csr slave interface to determine if the
failure bit is enabled and polling the run bit to determine when the test
is complete.

2. Looping back for different memory block trail and memory block size
when the test is complete.
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
5. Simulating Custom Components
This chapter shows you how to verify a custom component with Qsys and the Avalon
Verification IP Suite. You use Qsys to generate a testbench system for the design under
test and perform a functional simulation with the ModelSim simulator. The Qsys-
generated testbench uses the Avalon Verification IP Suite components.

f For more information about the Avalon Verification IP Suite, refer to the Avalon
Verification IP Suite User Guide.

Figure 5–1 shows the block diagram of a typical test environment.

Generating a Testbench System in Qsys
In this section you generate a testbench system in Qsys for the design under test. The
design under test in this chapter is the custom pattern generator from the other
tutorial chapters. This component generates high-speed streaming data for testing
memory devices. The soft-programmable custom pattern generator can generate
multiple test patterns. The component is programmed with the pattern data and
pattern length. When the end of the pattern is reached, the custom pattern generator
cycles back to the first element of the pattern.

For your own designs, if you do not want to use the Qsys-generated testbench system,
you can create your own Qsys testbench system by adding the Avalon Verification
Suite BFMs or your own models for simulation. You can also generate a Qsys
simulation model for the design or Qsys system under test, and use your own custom
HDL testbench to provide the simulation stimulus.

Opening the Tutorial Project
The tutorial design example files include a Quartus II project to set up the working
environment. To open the project, follow these steps:

Figure 5–1. Typical Test Environment Block Diagram

Avalon
Verification

Suite
DUTTest Program

Testbench

Test
Parameters

Test Stimuli
Qsys System Design Tutorial

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

5–2 Chapter 5: Simulating Custom Components
Generating a Testbench System in Qsys
1. Download and install the tutorial design files, as described in Chapter 1,
Introduction.

2. In the Quartus II software, open the Quartus II Project File (.qpf),
qsys_sim_tutorial.qpf, from the \simulation_tutorial directory.

Creating a New Qsys System for the Design Under Test
To create a new Qsys system for the design under test, follow these steps:

1. In the Quartus II software, on the File menu, click New.

2. Select Qsys System File and click OK.

3. Click Close on the Initializing Complete window.

4. The new system instantiates a clock source. However, the system does not need a
clock source, so remove it. Click on the clk_0 instance and click the X icon, or right-
click and select Remove.

5. On the Component Library tab, expand Memory Test Microcores.

6. Select Custom Pattern Generator and click Add.

7. Click Finish.

8. Rename the instance to pg:

a. In the Module column, right-click on custom_pattern_generator_0, and select
Rename.

b. Enter pg for the instance name.

Exporting All Design Under Test Interfaces
To export all design under test interfaces, follow these steps:

1. On the System Contents tab, in the Export column, for each interface click Click to
export. Keep the default export names.

2. Save and name the system:

a. On the File menu, click Save As.

b. Type file name pattern_generator and click Save.

Generating a Qsys Testbench System
To generate a testbench system for the design under test, follow these steps:

1. Click the Generation tab.

2. Under Simulation, for Create testbench Qsys system, select Standard, BFMs for
standard Avalon interfaces.

3. Under Synthesis, turn off Create HDL design files for synthesis and turn off
Create block symbol file (.bsf).

4. Click Generate.

5. After Qsys generates the testbench, click Close on the message window.
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 5: Simulating Custom Components 5–3
Generating a Testbench System in Qsys
1 Qsys generates this testbench system in the
\simulation_tutorial\pattern_generator\testbench directory.

You can generate the simulation model for the Qsys testbench system at the same time
by turning on Create testbench simulation model. However, the Qsys-generated
testbench system's components names are assigned automatically and you may want
to control the instance names to make it easier to run the test program for the BFMs. In
this tutorial, you edit the Qsys testbench system before generating the simulation
model.

Generate Qsys Testbench System's Simulation Models
In this section, you open the generated Qsys testbench system and rename the BFM
component instance names to ensure the testbench names match the test program
provided with the tutorial design files. You also generate the testbench's simulation
model. To rename the BFMs and generate the simulation models, follow these steps:

1. In Qsys, open the testbench system, pattern_generator_tb.qsys, from the
simulation_tutorial\pattern_generator\testbench directory.

2. On the System Contents tab, rename the instance as in Table 5–1.

3. Double-click one of the BFM components to open the parameter editor and view
its settings. These components are BFMs available in the Avalon Verification Suite
group in the Component Library. If necessary, you can change the settings for
these BFMs, to ensure adequate test coverage for your design, in the parameter
editor.

1 The Qsys-generated testbench matches inserted BFMs with the exported
interfaces from the design that they drive. The test program that provides
stimulus to the BFMs must account for the matching interface. For example,
an exported Avalon-MM slave interface (which expects word-aligned
addresses) is connected to an Avalon master BFM, which expects and
transacts word-aligned addresses instead of the byte or symbol addresses
that are default for Avalon masters.

4. Click Cancel to close the parameter editor without making changes.

5. On the Generation tab, under Simulation, for Create simulation model, select
Verilog.

6. For Create testbench Qsys system and Create testbench simulation model, select
None.

Table 5–1. New Instance Names

Qsys-Generated Components' Names New Instance Name

pattern_generator_inst DUT

pattern_generator_inst_pg_clock_bfm clock_source

pattern_generator_inst_pg_clock_reset_bfm reset_source

pattern_generator_inst_pg_csr_bfm csr_master

pattern_generator_inst_pg_pattern_access pattern_master

pattern_generator_inst_pg_pattern_output_bfm pattern_sink
April 2011 Altera Corporation Qsys System Design Tutorial

5–4 Chapter 5: Simulating Custom Components
Running Simulation In the ModelSim-Altera Software
7. Under Synthesis section, turn off all options.

8. Save the system.

9. Click Generate.

10. After Qsys generates the testbench, click Close on the message window.

1 Qsys generates the testbench system’s simulation models in the
\simulation_tutorial\pattern_generator\testbench\pattern_generator_tb
\simulation directory.

Qsys generates the simulation models and a ModelSim simulation script
(msim_setup.tcl), which compiles the required files for simulation and sets up
commands to load the simulation in the ModelSim simulator. You can run this
ModelSim script in ModelSim-Altera to compile, elaborate, or load everything for
simulation. In this tutorial, there is an external test program to provide simulation
stimulus. The tutorial design files include a simulation script, load_sim.tcl that
compiles the top-level simulation file and test program, and calls the Qsys-generated
script to compile the required files.

Running Simulation In the ModelSim-Altera Software
In this section you run a simulation in the ModelSim-Altera software on the testbench
that you created. To complete this simulation you use the test program provided in
the design files. This test program performs the following actions:

■ Reads a pattern file

■ Writes the pattern to the design under test via the pattern master BFM

■ Sets various design under test options via the CSR master BFM

■ Starts the design under test pattern generation

■ Collects data generated by the design under test

■ Compares the results against the original pattern file

The test starts by writing a walking ones pattern to the design under test.

Setting Up the Simulation Environment
This tutorial includes test program files that you can use with the Qsys-generated
testbench and ModelSim simulation script. To learn more about Qsys simulation
support, open and review the simulation script, \simulation_tutorial\load_sim.tcl.

The load_sim.tcl script sets simulation variables to set up the correct hierarchical
paths in the Qsys-generated simulation model and ModelSim script. In addition the
script identifies the top-level instance name for the simulation and provides the path
to the location of the Qsys-generated files. Some functions, such as memory
initialization, rely on correct hierarchical paths names in the simulation model. The
script then performs the following actions:

■ Sources the Qsys-generated ModelSim simulation script, msim_setup.tcl

■ Uses the command aliases defined in the msim_setup.tcl script to compile and
elaborate the files for the Qsys testbench simulation model
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 5: Simulating Custom Components 5–5
Running Simulation In the ModelSim-Altera Software
■ Compiles and elaborates the extra simulation files for the tutorial—the test
program and top-level simulation file that instantiates the test program

■ Loads the wave.do file that provides signals for the ModelSim waveform view

Close the load_sim.tcl script without making any changes.

Running the Simulation
To run the simulation, follow these steps:

1. Start the ModelSim-Altera software.

2. On the File menu, click Change Directory, browse to the \simulation_tutorial
directory, and click OK.

3. On the Compile menu, click Compile Options.

4. Click the Verilog & SystemVerilog tab, select Use SystemVerilog, and click OK.

5. On the File menu, click Load.

1 Ensure you activate the ModelSim-Altera Transcript window, otherwise the
Load function is disabled.

6. Select the load_sim.tcl script and click Open.

1 The warning messages relate to unused connections in an ALTSYNCRAM
megafunction. Because these ports are not used, you can ignore the
warning messages.

7. Run the simulation for 40 μs. To run the simulation, in the ModelSim-Altera
Transcript window type the following command:

run 40usr

1 You can run the h command to show the available options for the
msim_setup.tcl script.

8. Observe the results. Example 5–1 shows the messages that you should see.

Example 5–1. Simulation Results

INFO: top.tb.reset_source.reset_deassert: Reset deasserted

INFO: top.pgm: Starting test walking_ones.hex

INFO: top.pgm.read_file: Read file walking_ones.hex success

INFO: top.pgm.read_file: Read file walking_ones_rev.hex success

INFO: top.pgm: Test walking_ones.hex passed
April 2011 Altera Corporation Qsys System Design Tutorial

5–6 Chapter 5: Simulating Custom Components
Running Simulation In the ModelSim-Altera Software
9. To run the low frequency test, modify \simulation_tutorial\test_include.svh
(Table 5–2).

10. Reload the load_sim.tcl script, run the simulation for 40 μs, and observe the result
in the Transcript window. Example 5–2 shows the messages you should see.

11. To run the random number pattern test, modify
\simulation_tutorial\test_include.svh (Table 5–3).

12. Reload the load_sim.tcl script, run the simulation for 40 μs, and you observe the
results that Example 5–3 shows.

Table 5–2. Values for Low Frequency Pattern Test

Macro New Value

PATTERN_POSITION 0

NUM_OF_PATTERN 2

NUM_OF_PAYLOAD_BYTES 256

FILENAME low_freq.hex

FILENAME_REV low_freq_rev.hex

Example 5–2. Transcript Message for the Low Frequency Pattern Test

INFO: top.pgm: Starting test low_freq.hex

INFO: top.pgm.read_file: Read file low_freq.hex success

INFO: top.pgm.read_file: Read file walking_ones_rev.hex success

INFO: top.pgm: Test low_freq.hex passed

Table 5–3. Values for Random Number Pattern Test

Macro New Value

PATTERN_POSITION 32

NUM_OF_PATTERN 64

NUM_OF_PAYLOAD_BYTES 1024

FILENAME random_num.hex

FILENAME_REV random_num_rev.hex

Example 5–3. Transcript Message for the Random Number Pattern Test

INFO: top.pgm: Starting test random_num.hex

INFO: top.pgm.read_file: Read file random_num.hex success

INFO: top.pgm.read_file: Read file random_num_rev.hex success

INFO: top.pgm: Test random_num.hex passed
Qsys System Design Tutorial April 2011 Altera Corporation

Chapter 5: Simulating Custom Components 5–7
Running Simulation In the ModelSim-Altera Software
In this chapter, you set up the simulation environment for the custom pattern
generator component and used BFM test code to perform simulation. You can test
your own custom Qsys components with this method, to verify their functionality
before you integrate them into a complete system. You can also create a testbench
system for a complete Qsys system with this method, and test your top-level system
behavior with BFMs.
April 2011 Altera Corporation Qsys System Design Tutorial

5–8 Chapter 5: Simulating Custom Components
Running Simulation In the ModelSim-Altera Software
Qsys System Design Tutorial April 2011 Altera Corporation

April 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

April 2011 2.0 Updated for Qsys v11.0.

December 2010 1.1 Maintenance release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Qsys System Design Tutorial

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Qsys System Design Tutorial April 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Qsys System Design Tutorial
	Contents
	1. Introduction
	Software and Hardware Requirements
	Overview
	Downloading and Installing the Design Example Files
	Opening the Tutorial Project

	2. Creating Qsys Systems
	Creating the Data Pattern Generator
	Creating a New Qsys System with a Clock Source
	Adding a Pipeline Bridge
	Adding a Custom Pattern Generator
	Adding a PRBS Pattern Generator
	Adding a Two-to-One Streaming Multiplexer
	Verifying the Memory Address Map
	Connecting the Reset Signals and Inserting Adapters

	Creating the Data Pattern Checker
	Creating a New Qsys System and Setting Up the Clock Source
	Adding a Pipeline Bridge
	Adding a One-to-Two Streaming Demultiplexer
	Add a Custom Pattern Checker
	Add the PRBS Pattern Checker
	Verify the Memory Address Map
	Connecting the Reset Signals

	3. Assembling Hierarchical Systems
	Creating the Hierarchical Memory Tester
	Adding the Data Pattern Generator
	Adding the Pattern Checker
	Adding the Memory Master Components
	Adding a Pattern Writer Component
	Adding a Pattern Reader Component
	Adding a RAM Test Controller

	Connecting the Reset Signals
	Specifying the Memory Address Map

	Completing the Top-Level System
	Compiling and Downloading Software to a Development Board

	4. Verifying Hardware in System Console
	Understanding the Scripts
	Opening the Tutorial Project
	Adding the JTAG-to-Avalon Master Bridge
	Compiling and Using System Console with a Development Board

	5. Simulating Custom Components
	Generating a Testbench System in Qsys
	Opening the Tutorial Project
	Creating a New Qsys System for the Design Under Test
	Exporting All Design Under Test Interfaces
	Generating a Qsys Testbench System
	Generate Qsys Testbench System's Simulation Models

	Running Simulation In the ModelSim-Altera Software
	Setting Up the Simulation Environment
	Running the Simulation

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

