
July 2011 Altera Corporation

AN-459-4.0 Application Note

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and
STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries.
All other words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed
to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Subscribe

Guidelines for Developing a Nios II HAL
Device Driver

This application note explains the process of creating and debugging a hardware
abstraction layer (HAL) software device driver. An example of a HAL software device
driver, called my_uart_driver, illustrates various software development stages. The
example driver targets the Altera_Avalon_UART device, connected through a
Vectored Interrupt Controller (VIC) to the Nios® II processor.

This application note helps you with custom device driver development for Nios II
systems in the following ways:

■ Shows the development process in steps, from sending bits out the transmit pin in
main() through the construction of device access macros and automatic device
initialization in alt_sys_init()

■ Shows how to develop a driver with the command-line based Nios II Software
Build Tools (SBT)

■ Shows how to create applications and a board support package (BSP) based on
your driver

■ Shows how to import and debug the applications and BSP with the Nios II
Software Build Tools for Eclipse

■ Explains interrupt latency, interrupt nesting, and determinism

■ Identifies system calls that cannot be included in a device driver interrupt service
routine (ISR)

■ Describes debugging tips and techniques, such as identifying UART transmission
errors

This application note uses the Nios II Embedded Evaluation Kit (NEEK), Cyclone® III
Edition, as an example hardware platform.

f For more information about the HAL, refer to the Overview of the Hardware Abstraction
Layer chapter in the Nios II Software Developer's Handbook. For more information about
interrupt latency, refer to the Exception Handling chapter in the Nios II Software
Developer's Handbook.

http://www.altera.com/common/legal.html
http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-459
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Page 2 Prerequisites for HAL Device Driver Development

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Prerequisites for HAL Device Driver Development
This document targets advanced systems developers with a basic understanding of
the following concepts:

■ Nios II application development, including creating and building software
applications and BSPs with the Nios II SBT, including the Nios II SBT for Eclipse.

■ The Quartus® II software, including opening Quartus II projects that match the
target board, launching the Qsys system integration tool, and examining various
peripheral settings.

■ Using the Quartus II Programmer tool to program an SRAM Object File (.sof) to an
FPGA through an Altera® USB-Blaster™ download cable.

f To gain the minimum prerequisite knowledge, refer to the following resources:

■ The Nios II Hardware Development Tutorial, available on the Nios II Hardware
Development Design Example page of the Altera website

■ The Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer's Handbook

■ The Getting Started from the Command Line chapter of the Nios II Software
Developer's Handbook

Using the HAL Architecture and Services
The HAL application programming interface (API) provides a standard POSIX-like
interface to the hardware, abstracting the hardware details from upper-level clients of
the HAL, such as operating systems, networking stacks, or Nios II applications. The
HAL provides a variety of generic device classes, including character-mode, file
subsystem, Ethernet, timestamp and system timers, direct memory access (DMA),
and flash memory. The Altera_Avalon_UART is a member of the character-mode
class of HAL devices. The HAL has an API for character-mode class devices, which
you can use to manipulate the Altera_Avalon_UART. Mutual exclusion resources are
available, provided either by MicroC/OS-II (if present) or by the HAL. These services
include semaphores and event flags. When the HAL device driver makes calls to these
resources, the calls are simply translated to non-operations when the multi-threading
services are not available.

f For additional information about HAL services, refer to the Developing Programs Using
the Hardware Abstraction Layer chapter in the Nios II Software Developer's Handbook.

f For additional information about the HAL API, refer to the HAL API Reference chapter
in the Nios II Software Developer's Handbook.

Software Requirements for the Driver Example
The following components are required:

■ Quartus® II software version 11.0 SP1 or higher.

■ Nios II Embedded Design Suite (EDS) version 11.0 SP1 or higher.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/support/examples/nios2/exm-hardware-tutorial.html
http://www.altera.com/support/examples/nios2/exm-hardware-tutorial.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Developing the HAL UART Device Driver Page 3

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

■ The an459-design-files.zip archive.

The an459-design-files.zip archive contains a hardware design example for the
NEEK, along with software examples and a driver example named
my_uart_driver. The following software example projects are included:

■ The bit_bang_uart application

■ The hello_world_my_uart application

■ The hal_my_uart BSP

f an459-design-files.zip is available on the HAL Device Drivers Design
Example page of the Altera website.

HAL Device Drivers and Components
This application note discusses Nios II device drivers and components at several
levels. To understand these levels, you need to be familiar with the following
concepts:

■ HAL-compatible component—A design for a piece of hardware that can be
incorporated into a Nios II system and supported by the HAL. A component is an
abstract IP core that can be configured for a specific application. A component has
abstract parameters, such as base address. These parameters have no specific
value until a component instance is created. The Altera Avalon UART is an
example of a component.

■ Component instance—A component that is instantiated in a system. Component
instance parameters have specific values, assigned at the time of instantiation. For
example, an instance of the Altera Avalon UART must have a specific base
address. There can be multiple instances of a component in a system. Each
instance has a unique name, such as uart1, assigned in Qsys.

■ HAL device driver—A piece of software written to interface a component to the
HAL. A device driver supports a specific component. A Nios II BSP contains a
single device driver for each component found in the system. If there are multiple
instances of one component, they are all supported by a single driver. In this
application note, my_uart_driver is an example of a device driver.

■ HAL generic device model class—A group of device drivers with similar
characteristics and a common high-level API. Generic device models allow you to
use a consistent set of API calls with a variety of hardware designs. The class of
character-mode devices is an example of a HAL device class, and the printf()
function is an example of a function call supported by this device class.

f For more information about HAL device classes, refer to “HAL
Architecture” in the Overview of the Hardware Abstraction Layer chapter of the
Nios II Software Developer's Handbook.

Developing the HAL UART Device Driver
This section walks you through creation of the my_uart_driver device driver as an
example of a HAL device driver.

http://www.altera.com/support/examples/nios2/exm-developing-hal-drivers.html
http://www.altera.com/support/examples/nios2/exm-developing-hal-drivers.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf

Page 4 Developing the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Preparing the bit_bang_uart Application and hal_my_uart BSP
First, you need to set up a development and debugging environment for the UART.
This example uses the NEEK with an accompanying design example in
an459-design-files.zip.

Follow these steps to build the bit_bang_uart project:

1. Get the most up-to-date version of an459-design-files.zip. an459-design-files.zip
is available on the HAL Device Drivers Design Example page of the Altera
website.

2. Unzip an459-design-files.zip to a working directory, such as C:/my_design. This
application note refers to this directory as <my_design>. Be sure to preserve the
directory structure of the extracted software archive. Extraction creates a directory
structure tree under <my_design> with the following four subdirectories:

■ ip/my_uart

■ software_examples/bsp/hal_my_uart

■ software_examples/app/bit_bang_uart

■ software_examples/app/hello_world_my_uart

1 The working directory name you choose must not contain any spaces.

1 After extracting an459-design-files.zip, refer to <my_design>/readme.txt for a list of
any required software patches or other updated information. If a patch is required,
install it according to the instructions in readme.txt.

Preparing the my_uart_driver Device Driver
This section provides some background on how the my_uart_driver device driver is
associated with a component instance. You specify the name of the directory to store
both the software device drivers and the custom components. The name should be
descriptive enough to identify the custom component. The directory must be under
the <my_design>/ip directory. The librarian searches for user component files named
<component_name>_sw.tcl in directories below this ip directory.

Every HAL device driver has a software description file. The software description file
name is of the form <component_name>_sw.tcl. This name must match the
corresponding <component_name>_hw.tcl file generated by the Component Editor.

The my_uart_driver device driver’s software description file is
<my_design>/ip/my_uart/my_uart_sw.tcl.

1 All components generated by the Component Editor have a
<component_name>_hw.tcl file. However, certain components provided by Altera,
such as the Altera_Avalon_UART, are generated outside the Component Editor, and
therefore do not have a <component_name>_hw.tcl file.

f For additional information about creating device driver Tcl scripts, refer to the
“Driver and Software Package Tcl Script Creation” section of the Developing Device
Drivers for the Hardware Abstraction Layer chapter in the Nios II Software Developer’s
Handbook.

http://www.altera.com/support/examples/nios2/exm-developing-hal-drivers.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Developing the HAL UART Device Driver Page 5

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

Altera provides an additional tool with the Nios II processor, the System Console, that
is useful for testing component instances and software device drivers, and for
constructing BSPs. This application note does not describe the System Console.

f For information about the System Console, refer to the System Console User Guide.

Configuring the Altera_Avalon_UART Component
In this section, you configure the Altera_Avalon_UART hardware component in
Qsys. Perform the following steps:

1. Start the Quartus II software. On the File menu, click Open Project.

2. Browse to <my_design>.

3. Select the Quartus II project file AN459.qpf, and click Open.

4. On the Tools menu, click Qsys and open system.qsys.

5. In Qsys, in the Module Name column, double-click on uart1.

6. In the UART (RS-232 Serial Port) - uart1 dialog box, verify the baud rate is set to
115200 bps, as shown in Figure 1.

7. Click Finish.

8. In the System Contents tab of Qsys, verify the value for the UART base address.

This design example uses a value of 0x80 for the UART’s register base address. If
you use a hardware design other than the design example accompanying this
application note, the value of the UART's register base address might be different.
Open Qsys and find the UART base address for your board. Figure 2 shows the
base address for the UART used in this example.

9. Click Generate in Qsys to regenerate the system.

10. Recompile the Quartus II project.

11. In the Quartus II software, on the Tools menu, click Programmer.

12. To program the AN459.sof image to the development board, ensure that
Program/Configure is turned on and click Start.

13. In Qsys, on the Tools menu, click Nios II Command Shell.

Figure 1. Verify UART Baud Rate

http://www.altera.com/literature/ug/ug_system_console.pdf

Page 6 Developing the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

14. Change the directory to <my_design>/software_examples/app/bit_bang_uart.

15. Run the create-this-app script as follows:

./create-this-appr

This step might take several minutes to complete.

The create-this-app script specifies the BSP named hal_my_uart. The hal_my_uart
BSP associates the component instance uart1 with the software driver
my_uart_driver, as shown in the summary.html excerpt in Figure 3. The
create-this-bsp script for the hal_my_uart BSP selects component instance uart1
for the stdio device. Build messages are stored in
bsp/hal_my_uart/hal_my_uart_build_log.txt.

1 The compiler might report a small number of harmless warnings when you
build bit_bang_uart. For a list of expected warnings, refer to the
<my_design>/readme.txt file, extracted from an459-design-files.zip.

16. Change the directory to <my_design>/software_examples/bsp/hal_my_uart.

Figure 2. uart1 Peripheral Register Base Address

Developing the HAL UART Device Driver Page 7

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

17. Edit alt_sys_init.c in your favorite editor. The vi editor is available from the
Nios II Command Shell.

18. Disable the automatic invocation of the HAL UART device driver initialization
function by commenting out invocations of the following macros in alt_sys_init.c:

■ ALTERA_AVALON_UART_INSTANCE()

■ ALTERA_AVALON_UART_INIT()

19. Save alt_sys_init.c.

20. Rebuild the bit_bang_uart project by changing the directory back to
<my_design>/software_examples/app/bit_bang_uart, and executing make.

21. Connect a serial cable from the 9-pin console port on the Nios development board
to an RS-232 serial port on your development host computer.

22. Ensure that your host serial port is configured with the following settings:

■ 115200 baud

■ 8 data bits

■ 1 stop bit

■ No parity

■ No flow control

Importing Projects
Follow these steps to import the bit_bang_uart application project and the
hal_my_uart BSP project:

1. In Qsys, in the Nios II menu click Nios II Software Build Tools for Eclipse to
launch the Nios II SBT for Eclipse.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II
Software Build Tools Project.

4. Click Next. The Import Software Build Tools Project wizard appears.

5. Next to Project Location, click Browse. Navigate to and select the
<my_design>/software_examples/app/bit_bang_uart directory.

6. Click OK.

7. Name the project bit_bang_uart.

8. Turn on Managed Project to have Nios II SBT for Eclipse manage your makefile
for you.

Figure 3. Driver Mapping in summary.html

Page 8 Developing the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

9. Click Finish. The wizard imports the bit_bang_uart application project.

10. Repeat steps 2 through 9, but at step 5 instead import the
<my_design>/software_examples/bsp/hal_my_uart BSP.

1 For additional information about importing Nios II SBT command-line
projects, refer to “Importing a Command-Line Project” in the Getting Started
with the Graphical User Interface chapter of the Nios II Software Developer's
Handbook.

Understanding the Example Software
This example demonstrates how you can verify hardware functionality by specifying
an explicit, hard-coded memory address. In the Nios II SBT for Eclipse Project
Explorer tab, in the Nios II Project Explorer view, expand the bit_bang_uart project,
and open bit_bang_uart.c. In the main() procedure of bit_bang_uart.c, you can see
that the first call to IOWR() uses a hard-coded base address of 0x80 for uart1.

Using a hard-coded address can be helpful when you first bring up new hardware, to
rule out any software errors, such as C pointer dereference software coding errors, in
obtaining the peripheral's memory-mapped registers base address. This technique
provides confidence that your software is referencing the actual hardware peripheral
register.

Preview: Customizing the Design
This section describes typical modifications you might make to the software after you
have verified that it works with hard-coded addresses.

1 Before carrying out these modification, work through the steps in “Debugging the
bit_bang_uart Project” on page 9. Design modifications are described in detail starting
in “The BitBangUartTransmit() Function” on page 15.

After you confirm successful communication from the software to the hardware, you
can change the hard-coded address to a symbolic name found in system.h. Replacing
the hard-coded register address with a symbolic definition enables the Nios II SBT to
update the software if the peripheral's register base address changes in the future.

UART1_BASE is a definition provided by system.h. When defining macros in system.h,
the Nios II SBT takes the peripheral name as defined in Qsys, and converts it to
uppercase. The Nios II SBT creates the peripheral's base address by appending _BASE
to the peripheral's name.

Making Software Modifications
UART1_BASE is defined in system.h, a generated header file, and used in the
bit_bang_uart.c source file. If you use a different hardware design, and the UART
peripheral name is not uart1, search and replace the occurrences of UART1_BASE in
bit_bang_uart.c with the name <your_uart_peripheral_name>_BASE. Find the
UART peripheral module name and register base on the System Contents tab in
Qsys. Refer to Figure 2 on page 6.

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Debugging the bit_bang_uart Project Page 9

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

Making Hardware Modifications
If you make hardware design modifications, you must regenerate your Nios II system
in Qsys and recompile the Quartus II project in the Quartus II software. In the
regeneration step, Qsys updates the SOPC Information File (.sopcinfo) for your
hardware design.

If you have a pre-existing BSP, such as the example design, an updated .sopcinfo file
requires that you regenerate your BSP in the BSP Editor (or by executing nios2-bsp on
the command line). Then you must do a clean build of the BSP as well as the
application that depends on it. The clean build is required because the software needs
to obtain the new value of the _BASE symbol from system.h.

f For additional information about updating BSP files after a hardware change, refer to
“Board Support Packages” in the Nios II Software Build Tools chapter of the Nios II
Software Developer's Handbook.

In the Nios II Command Shell, to force the SBT to copy or regenerate all BSP and
application files, simply perform the following steps:

1. Delete the application makefile, for example app/bit_bang_uart/Makefile.

2. Delete the BSP’s public.mk file, for example bsp/hal_my_uart/public.mk.

3. Execute the create-this-app script in the application directory, for example
app/bit_bang_uart/create-this-app. The create-this-app script runs the
create-this-bsp script, which in turn runs nios2-bsp.

Debugging the bit_bang_uart Project
This section demonstrates debugging techniques with the bit_bang_uart project. To
start debugging bit_bang_uart, perform the following steps:

1. In the Nios II Command Shell, open nios2-terminal in UART mode as follows:

nios2-terminal --uart --port=<port name> --baud-rate=115200

For example, on a Windows system, <port name> might be /dev/com1.

1 In the Nios II SBT for Eclipse, the Nios II Console is connected to the JTAG
UART, and receives the output to the JTAG UART from the Altera logging
device.

2. In the Project Explorer view of the Nios II SBT for Eclipse, right-click the
bit_bang_uart project, and click Build Project.

3. On the Run menu, click Debug Configurations to prepare a debug configuration
for the bit_bang_uart project.

4. In the Debug Configurations dialog box, select Nios II Hardware.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Page 10 Debugging the bit_bang_uart Project

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

5. Click the New launch configuration button, , to create a new debug
configuration. To name the debug configuration, in the Name box type neek_uart,
and click Apply. Refer to Figure 4.

6. On the Project tab, set Project name to bit_bang_uart, and set ELF file name to the
path name of the application project’s Executable and Linking Format File (.elf).

7. Verify that none of the tabs contains a red “x”, indicating an error. If any do, select
that tab, and fill in the required data necessary to resolve the error as indicated by
the tool's messages. For example, if more than one USB-Blaster cable is connected
to your development host computer, the Target Connection tab has a red “x“. In
this case, you must select the appropriate cable under Processors to resolve the
error.

1 If the message at the top of the dialog box says Actual system ID not found
at target base address, on the Target Connection tab, click Refresh
Connections. You might need to click Refresh Connections several times to
establish a connection.

Figure 4. Debug Configuration Project Tab

Debugging the bit_bang_uart Project Page 11

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

8. Click the Target Connection tab (see Figure 5). The message at the top of the
dialog box says The expected Stdout device name does not match the selected
target byte stream device name. This message is expected, because in the
Connections panel, under Byte Stream Devices, the listed device is jtag_uart,
while the stdout device used by the bit_bang_uart application is uart1. You use
nios2-terminal to send and receive serial I/O. nios2-terminal is required because
the Nios II SBT for Eclipse does not support the use of a UART as a byte stream
device.

The jtag_uart byte stream device is used to receive Altera logging messages, as
described in “Debugging with the Altera Logging Functions” on page 35.

f For additional information about setting up a debug configuration for
Nios II SBT projects, refer to “Run Configurations” in the Getting Started
with the Graphical User Interface chapter of the Nios II Software Developer's
Handbook.

9. Click Debug.

10. If Eclipse prompts you to switch to the Nios II Debug perspective, click Yes.

1 Depending on how the Eclipse preferences are configured, Eclipse might
automatically switch to the Nios II Debug perspective.

11. Select the Nios II Console view.

Figure 5. Debug Configuration Target Connection Tab

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Page 12 Debugging the bit_bang_uart Project

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

12. On the Window menu, point to Show View and click Memory to open the
Memory view.

13. If the Memory view appears in the lower left corner, sharing a tabbed area with the
Console view, drag the memory tab to the upper right corner of the perspective.
This arrangement allows you to view the Console and Memory views
simultaneously.

14. Click the Add Memory Monitor button, , in the Memory view, as shown in
Figure 6. This action opens a Monitor Memory dialog box in which you can type
the memory address that you want to monitor.

15. Enter the UART peripheral's register base address, as shown in Figure 6 (0x80 for
the uart1 peripheral in the design example accompanying this application note).

16. Click OK.

17. In the Memory view, right-click any cell under the column labeled 0 – 3, and click
Format. Set Column Size to 1 unit per column.

18. Click OK.

Figure 6. Specifying Memory Address to Monitor

Debugging the bit_bang_uart Project Page 13

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

19. Use the Step Over button to advance the program execution over the IOWR()
macro. This macro transmits an asterisk to nios2-terminal by writing directly to
the UART's transmit register, as shown in Figure 7.

1 If you do not see an asterisk in nios2-terminal, verify your hardware cable
is properly connected and your UART peripheral base address matches the
one in your hardware design.

The red numbers in the Memory view indicate which memory values changed
during the last “step over” operation. This change helps you verify that a new
peripheral is functioning correctly. The 2A in the Memory view is the hexadecimal
value for the asterisk character (*), as shown in Figure 8.

Figure 7. Asterisk Transmitted from Memory-Mapped Register

Page 14 Debugging the bit_bang_uart Project

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

20. To show the Memory view in ASCII rather than hexadecimal, click the New
Renderings tab (refer to Figure 9). In the New Renderings tab, select ASCII and
click Add Rendering(s).

The 2A in the Memory view changes to an asterisk.

Figure 8. Transmit Asterisk

Figure 9. Adding an ASCII Rendering to the Memory View

The BitBangUartTransmit() Function Page 15

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

21. You can transmit characters over the UART by directly changing memory values
in the Memory view as follows:

a. In the ASCII rendering, type an h in the cell currently occupied by the asterisk
in the Memory view. This cell represents the transmit register.

b. Press Enter.

c. Type an i in the same cell in the Memory view.

d. Press Enter.

The word hi appears in nios2-terminal, as shown in Figure 10.

1 The peripheral memory-mapped registers bypass the cache. Therefore, the status
register value displayed in the Memory view reflects any changes to the status
register made by the peripheral. The IOWR() and IORD() macros always bypass the
cache.

The BitBangUartTransmit() Function
This section examines the BitBangUartTransmit() function in bit_bang_uart.c. The
BitBangUartTransmit() function demonstrates transmission of characters over the
UART.

In the Nios II SBT for Eclipse, step over the BitBangUartTransmit() function. The
characters BIT BANH appear in nios2-terminal, as shown in Figure 11. The following
steps show why the string appears as it does.

Figure 10. Characters Transmitted by Manipulating UART Register

Figure 11. Stepping Over the BitBangUartTransmit() Function

Page 16 The BitBangUartTransmit() Function

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

To begin analyzing BitBangUartTransmit(), perform the following steps:

1. Restart the debugging session as follows:

a. Click Terminate to stop the current debugging session.

b. On the Run menu, click Debug Configurations.

c. With the neek_uart debug configuration selected (the default), click Debug.

2. Click Step Over to step to the call to the BitBangUartTransmit() function.

3. Click Step Into to step into the BitBangUartTransmit() function.

4. Click Step Over to execute one line at a time until the string BIT BANGBASH appears
in nios2-terminal, as shown in Figure 12.

bit_bang_uart.c first writes a value of zero to the status register to clear any existing
errors on the UART. The IOWR() macro accomplishes this step by writing to
UART1_BASE.

Next, a loop cycles through the bitbang[] array, printing out the characters BIT BANG
to the UART. To prevent overruns, the loop checks the transmit ready bit before each
subsequent character transmission. Immediately after the loop, the software transmits
characters BASH one after the other without checking the transmit ready bit.

If you step through each line to the end of the BitBangUartTransmit() function, the
software transmits the characters BIT BANGBASH through the UART. These characters
appear in nios2-terminal, as shown in Figure 12. There is no transmitter overrun,
because the UART transmits each character much faster than you can single-step.

To observe BitBangUartTransmit()’s real-time behavior, perform the following steps:

1. Restart the debugging session, as in Step 1 on page 16.

2. Place a breakpoint in BitBangUartTransmit(), on the following statement:

uart_status = IORD (UART1_BASE, 2);

1 To set a breakpoint, double-click in the gray area left of the line, as shown in
Figure 13.

3. Click the Resume button . The program runs until it reaches the breakpoint.

Figure 12. Transmitting BIT BANGBASH by Stepping Through the Function

The BitBangUartTransmit() Function Page 17

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

4. In the Variables view, right-click the uart_status variable name, point to Format,
and click Hexadecimal.

5. Step over the assignment of uart_status. The Variables view shows that the value
of uart_status has changed to 0x170, as shown in Figure 14.

Figure 13. Setting a Breakpoint in BitBangUartTransmit()

Figure 14. Value of uart_status Variable Is 0x170

Page 18 The BitBangUartReceive() Function

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

The register map for the Altera Avalon UART core shows that the status register's
value of 0x170 means that the following bits are set:

■ Bit 8, the exception (E) bit

■ Bit 4, the transmitter overrun error (TOE) bit

f The register map for the Altera Avalon UART core is described in the UART Core
chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.

Because the software does not wait for the transmitter to be ready before writing the
final characters (GBASH), the transmitter is overrun and only the last character, H, is
transmitted, as shown in Figure 15.

The BitBangUartReceive() Function
This section examines the BitBangUartReceive() function in bit_bang_uart.c. The
BitBangUartReceive() function demonstrates receiving characters over the UART.

To analyze the BitBangUartReceive() function, perform the following steps:

1. Step into the BitBangUartReceive() function.

2. Set a breakpoint on the while loop immediately after the statement that reads a
character into incoming_character, as shown in Figure 16.

3. Click the Resume button.

Figure 15. Transmitter Overrun

http://www.altera.com/literature/hb/nios2/n2cpu_nii51010.pdf

The BitBangUartReceive() Function Page 19

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

4. In the following loop statement, the Nios II processor is waiting for the receive
ready (RRDY) bit to go high:

while (!(uart_status=IORD(UART1_BASE, 2) & 0x80));

nios2-terminal displays a prompt, as shown in Figure 17.

Figure 16. Setting a Breakpoint in BitBangUartReceive()

Figure 17. Waiting to Receive Character on UART

Page 20 Creating Device Hardware Access Macros

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

5. In nios2-terminal, type * (asterisk). The debugger hits the breakpoint you set, as
shown in Figure 18.

6. Examine the Variables view (expand it if necessary to see the incoming_character
variable). The incoming_character variable holds the asterisk you sent through
nios2-terminal, as shown in Figure 18.

Completing these steps verifies that both the transmit and receive functions of the
UART work in polled mode.

Creating Device Hardware Access Macros
After you verify the functionality of the peripheral registers with the bit_bang_uart
test software, you can replace the IORD() and IOWR() macros and their hard-coded
address parameters with register access macros. You define the register access macros
for the component, under the
<my_design>/ip/<componentfolder>/inc/<component>_regs.h source code header file.

The base address, component instance name, and interrupt request (IRQ) priority are
all available to HAL device drivers from system.h. You can write macros that access
specific peripheral registers by name, constructed from the information provided in
system.h. The macros remove the hard-coded nature of the register accesses and
instead pull the register base address information out of system.h. This procedure

Figure 18. incoming_character Variable Is Set to the Character Entered on the Console

Creating Device Hardware Access Macros Page 21

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

allows automatic incorporation of any changes made to the component instance base
address in the hardware design. For example, to access the UART's transmit register,
the code in bit_bang_uart.c uses an IOWR() macro with a hard-coded offset (value 1).
Convert this method to a device access macro that can adapt to changes in system.h
automatically.

Example 1 (from my_uart_regs.h) defines a set of device access macros and related
access masks for the UART status register.

The Altera Nios II component also provides the address construction macro
IO_CALC_ADDRESS_NATIVE(). The UART device access macros in
nios2eds/components/altera_nios2/HAL/inc/io.h use this macro.
IO_CALC_ADDRESS_NATIVE() computes the native address of a specified peripheral
register. To compute this address, it adds the second parameter (offset) to the first
parameter (peripheral base address). The offset is represented in system bus width
units, for example, 32 bits. The IORD() and IOWR() macros translate to the Nios II
assembler instructions, ldwio and stwio, respectively.

Native addressing mode is deprecated, because Altera is moving to a direct
addressing model. New components should be written to use byte-enable signals.
Write new device drivers for these components with direct addressing macros, such
as IORD_32DIRECT(), which utilize the byte-enable signals. Offsets for direct address
macros are always represented in bytes. The bit_bang_uart example application uses
native addressing. The my_uart device driver also uses native addressing.

Example 1. Device Access Macros in my_uart_regs.h

#define MY_UART_STATUS_REG 2
#define IOADDR_MY_UART_STATUS(base) IO_CALC_ADDRESS_NATIVE(base, MY_UART_STATUS_REG)
#define IORD_MY_UART_STATUS(base) IORD(base, MY_UART_STATUS_REG)
#define IOWR_MY_UART_STATUS(base, data) IOWR(base, MY_UART_STATUS_REG, data)

#define MY_UART_STATUS_PE_MSK (0x1)
#define MY_UART_STATUS_PE_OFST (0)
#define MY_UART_STATUS_FE_MSK (0x2)
#define MY_UART_STATUS_FE_OFST (1)
#define MY_UART_STATUS_BRK_MSK (0x4)
#define MY_UART_STATUS_BRK_OFST (2)
#define MY_UART_STATUS_ROE_MSK (0x8)
#define MY_UART_STATUS_ROE_OFST (3)
#define MY_UART_STATUS_TOE_MSK (0x10)
#define MY_UART_STATUS_TOE_OFST (4)
#define MY_UART_STATUS_TMT_MSK (0x20)
#define MY_UART_STATUS_TMT_OFST (5)
#define MY_UART_STATUS_TRDY_MSK (0x40)
#define MY_UART_STATUS_TRDY_OFST (6)
#define MY_UART_STATUS_RRDY_MSK (0x80)
#define MY_UART_STATUS_RRDY_OFST (7)
#define MY_UART_STATUS_E_MSK (0x100)
#define MY_UART_STATUS_E_OFST (8)
#define MY_UART_STATUS_DCTS_MSK (0x400)
#define MY_UART_STATUS_DCTS_OFST (10)
#define MY_UART_STATUS_CTS_MSK (0x800)
#define MY_UART_STATUS_CTS_OFST (11)
#define MY_UART_STATUS_EOP_MSK (0x1000)
#define MY_UART_STATUS_EOP_OFST (12)

Page 22 Staging the HAL Device Driver Development

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

For example, the following addressing macro:

IOWR(UART1_BASE, 2, 0);

translates to the following direct addressing macro:

IOWR_32DIRECT(UART1_BASE, 8, 0);

Notice that the offset specified is now eight bytes, instead of two long words.

f For more details on direct addressing macros, refer to “Writing Device Drivers” in the
Cache and Tightly-Coupled Memory chapter in the Nios II Software Developer's Handbook.

In the BitBangUartTransmit() function in bit_bang_uart.c, you used an IORD()
macro with hard-coded values to read the UART status register:

uart_status = IORD(UART1_BASE, 2);

You can achieve the same functionality by using the UART's device access macro:

uart_status = IORD_MY_UART_STATUS(UART1_BASE)

Using this macro makes the device driver code easier to write and easier to
understand after it is written.

Altera recommends that you create device access macros for all of your custom
component's registers, and that you create masks for each of the bits represented in
those macros. These steps result in a driver that is much easier to understand;
therefore, it is easier to verify the correctness of the device driver.

Staging the HAL Device Driver Development
The following sections describe the existing my_uart_driver source code, particularly
the device access descriptors used to manipulate the peripheral. my_uart_driver is
based on the Altera Avalon UART device driver, with all of the names changed to
represent the “my” flavored device, as an illustration of how you can incorporate
your own device driver. All of the function and macro names (except for the *_INIT()
and *_INSTANCE() macros) in the Altera Avalon UART device driver have had the
“altera_avalon” portion of the name replaced with “my”. For example,
ALTERA_AVALON_UART_STATUS_REG() has become MY_UART_STATUS_REG().

The two macros for _INSTANCE() and _INIT() are exceptions, because their names
must match the hardware component name. As a result, the my_uart_driver device
driver has definitions for ALTERA_AVALON_UART_INIT() and
ALTERA_AVALON_UART_INSTANCE(). These _INIT() and _INSTANCE() macros must be
defined in a header file that also matches the device name, which in this case is
altera_avalon_uart.h. This restriction is necessary for the automatic construction of
alt_sys_init.c, a generated C source file that takes care of component instance
initialization.

This example shows you how to write a software device driver that fits the HAL
structure, either for manipulation of your own new device, or to override the
functionality of the provided software device driver for an Altera component or other
third party device.

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Understanding the Hardware-Specific INSTANCE and INIT Macros Page 23

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

The file bit_bang_uart.c demonstrates how to write source code. The source code
development progresses toward a complete device driver. Source code development
starts from direct access of the peripheral's registers and goes on to validating the
proper functioning of the Altera_Avalon_UART hardware. bit_bang_uart.c is the
first piece of software to communicate with the Altera Avalon UART hardware.

To develop the source code that accesses a new device, perform the following steps:

1. Use IOWR() macros with hard-coded address values in main() to write values
directly to the memory-mapped UART registers. IOWR() macros are the most
direct way to access the UART hardware. Direct hardware access is useful for
validating proper functioning of the component instance, while minimizing the
potential for any software coding errors to interfere with hardware validation.

f For more information about HAL device driver access macros, refer to the
“Accessing Hardware” section of the Developing Device Drivers for the
Hardware Abstraction Layer chapter in the Nios II Software Developer's
Handbook.

2. After developing some direct peripheral manipulation code for your custom
component, modeled after bit_bang_uart.c, write custom device access macros.

3. Using the custom device access macros from the previous step, develop and test
polled routines for the init(), read(), and write() functions.

4. Write the ISRs for interrupt driven mode. An ISR is an interrupt-driven software
routine, responding to a hardware interrupt that the peripheral generates when it
requires servicing. An interrupt-driven device driver is much more efficient than a
polled device driver, which wastes processor clock cycles by repeatedly querying
the peripheral to determine if there is work to be performed. An ISR allows the
Nios II processor to do other work while the peripheral is idle, or while it is
operating autonomously and does not require servicing by the Nios II processor.
Call alt_ic_isr_install() from main() to install the ISRs.

5. After you have tested the ISR and polled routines from main(), create and test the
INIT and INSTANCE macros. alt_sys_init.c invokes these initialization macros to
initialize both the software device driver and the hardware driver. The INIT macro
needs to initialize an alt_dev structure for the software device driver with the
tested functions for reading and writing to the UART hardware device. The
INSTANCE macro declares a structure for each component instance to hold
component instance-specific information, such as the baud rate and the transmit
and receive memory buffers. At this point, you move the alt_ic_isr_install()
calls from function main() to the device’s initialization code, as described in the
next section.

f For more information about the alt_dev structure, refer to “Character-Mode Device
Drivers” in the Developing Device Drivers for the Hardware Abstraction Layer chapter of
the Nios II Software Developer's Handbook.

Understanding the Hardware-Specific INSTANCE and INIT Macros
The INSTANCE macro creates the alt_dev structure, which represents the component
instance. This macro creates unique component instance-specific data structures.

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Page 24 Integrating a New HAL Device Driver in the BSP

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

The INIT macro must perform the following tasks:

■ Create mutual exclusion resources

■ Install the component's ISR with alt_ic_isr_register()

1 The my_uart_driver example driver supports both the enhanced and the
legacy HAL interrupt APIs. Supporting both APIs ensures that the driver
can be used in combination with legacy drivers supporting only the legacy
API. For information about supporting both APIs, refer to “Interrupt
Service Routines” in the Exception Handling chapter in the Nios II Software
Developer's Handbook.

■ Register the alt_dev structure with alt_dev_reg()

■ Enable interrupts

Integrating a New HAL Device Driver in the BSP
When you integrate a HAL device driver into a BSP, the following services are
enabled:

■ Automatic initialization with the alt_sys_init() function for the HAL device
drivers.

alt_sys_init() is an automatically generated function. alt_sys_init() calls the
INIT and INSTANCE macros for each component instance found in the hardware
design that has a specific source code directory structure and set of file names. The
directory structure for hardware components provided by Altera conforms to:

<Altera installation>/ip/altera/sopc_builder_ip/<component_folder>

The easiest option for a directory structure for your custom components conforms
to:

<my_design>/ip/<component_folder>

Place the device driver source code files in a folder structure under
<component_folder>. The file names conform to the following:

■ /inc/<component>_regs.h

■ /HAL/inc/<component>.h

■ /HAL/src/<component>.c

1 This document uses the variable <Altera installation> to represent the
location where the Altera Complete Design Suite is installed. On a
Windows system, by default, that location is c:/altera/<version number>.

■ HAL device-class services can access any specific HAL device in that class. For
example, Altera_Avalon_UART is a character-mode device, and so has access to
higher level services such as buffer management. HAL software device drivers
become available to the UNIX-style POSIX API for device functions such as open()
and read().

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Understanding HAL Mutual Exclusion Resources Page 25

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

f For more information about adding device drivers using the Nios II SBT, refer to the
“Integrating a Device Driver in the HAL” section of the Developing Device Drivers for
the Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

For more information about how to integrate your own VHDL or Verilog HDL source
code as a new HAL-compatible Qsys component, and for details about the
Component Editor tool, refer to the Creating Qsys Components chapter of Volume 1:
Design and Synthesis in the Quartus II Handbook.

Understanding HAL Mutual Exclusion Resources
Software device drivers can use mutual exclusion resources to control access to any
data structure or peripheral register. Event flags and semaphores provide
synchronization and mutual exclusion services. These resources allow only one task
to access a shared piece of data at a time in a multi-threaded environment.

If the MicroC/OS-II operating system is present, its resources are used. Otherwise, the
HAL provides its own set of event flags and semaphores. The HAL event flags and
semaphores support device driver source code portability. The event flags and
semaphores do nothing in this example.

The my_uart_driver device driver creates two semaphores and one event flag. The
two semaphores are called read_lock and write_lock. my_uart_driver uses them to
control access to the transmit and receive circular buffers. The event flag, called
events, indicates to the software device driver when data is ready to be transmitted or
received.

Overview of Debugging Tools for HAL Device Drivers
The Nios II EDS and Quartus II software tools provide a variety of mechanisms for
debugging device drivers:

■ You can monitor individual component instance signals for activity with the
SignalTap® II logic analyzer. For example, you can hook up the SignalTap II logic
analyzer to the UART hardware transmit line to watch for any activity while you
write characters to the Altera_Avalon_UART component instance through the
my_uart_driver device driver.

f For information about using SignalTap II with Nios II systems, refer to
AN446: Debugging Nios II Systems with the SignalTap II Embedded Logic
Analyzer.

■ You can step into the fprintf() function, stepping through the various layers of
abstraction until you reach the HAL’s invocation of my_uart_write() function in
the my_uart_driver device driver.

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf

Page 26 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

■ You can set breakpoints in the driver’s ISRs, or set watchpoints on UART
memory-mapped registers to pause the processor when a character is received.

1 Use caution when setting a breakpoint in an ISR. When you resume, there
might be problems with other devices, if they generated interrupts that
were not handled. However, sometimes the best way to debug a specific
device driver is to set a breakpoint in it. When this technique is required,
you can reset or download the software containing the device driver again
when you are done with a particular debugging session.

These mechanisms can help you diagnose an incorrectly configured system. For
example, if the interrupt controller receives a spurious interrupt signal, the interrupt
might not be properly handled. When interrupts are enabled after low-level system
initialization, there is no way to clear the interrupt source. As a result, the application
does not work correctly. The Nios II SBT for Eclipse debugger might even stop
communicating with the processor.

Debugging the HAL UART Device Driver
For the next set of debugging examples, you must create a new application. For these
examples, create the hello_world_my_uart application and import it to the
Nios II SBT for Eclipse. Next, regenerate the files which make up the hal_my_uart
BSP. This time, instead of commenting out the invocation of the macros
ALTERA_AVALON_UART_INSTANCE() and ALTERA_AVALON_UART_INIT(), let the
alt_sys_init() function install the Altera Avalon UART HAL device driver, after
which you can inspect its operation.

The following sections show examples of placing breakpoints and watchpoints in
HAL device driver source code to analyze component instance behavior.

To create and import the hello_world_my_uart project, perform the following steps:

1. Delete the generated file public.mk from the hal_my_uart BSP. Enter the
following command in the Nios II Command Shell:

rm <my_design>/software_examples/bsp/hal_my_uart/public.mk r

Deleting these files causes the next build to regenerate the hal_my_uart BSP files,
including alt_sys_init.c.

2. Create the hello_world_my_uart application by invoking its create-this-app
script. Enter the following commands:

cd <my_design>/software_examples/app/hello_world_my_uart r
./create-this-app r

This action accomplishes several tasks:

■ Invokes the create-this-bsp script for the hal_my_uart BSP.

■ In the BSP, deletes and rebuilds generated files and object files from the
previous build.

Debugging the HAL UART Device Driver Page 27

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

■ Builds the libhal_bsp.a BSP library in the
<my_design>/software_examples/bsp/hal_my_uart directory.

■ Builds the hello_world_my_uart.elf file in the
<my_design>/software_examples/app/hello_world_my_uart directory.

■ Generates a new public.mk file.

■ Sets the software device descriptors stdout, stderr, and stdin to uart1. The
<my_design>/software_examples/bsp/hal_my_uart/create-this-bsp script sets
up these software device descriptors by calling nios2-bsp.

■ Creates the software device driver, my_uart_driver, in the
<my_design>/ip/my_uart directory, and associates it with the
Altera_Avalon_UART device. The <my_design>/ip/my_uart/my_uart_sw.tcl
script creates the driver and associates it with its device.

■ Sets the software device driver called my_uart_driver to the component
instance named uart1. The
<my_design>/software_examples/bsp/hal_my_uart/ hal_my_uart.tcl script,
passed to nios2-bsp, sets the driver to uart1.

■ Regenerates alt_sys_init.c by invoking of ALTERA_AVALON_UART_INIT().

1 You can invoke nios2-bsp with the --debug parameter, which displays
verbose information about the construction steps in this section. The
--debug parameter can be very useful for finding errors in the construction
of the relevant Tcl scripts and command shell scripts.

3. Import the hello_world_my_uart application to the Nios II SBT for Eclipse as
described in “Importing Projects” on page 7 in Steps 2 through 8, substituting the
hello_world_my_uart application for the bit_bang_uart application. It is not
necessary to re-import the BSP.

Setting Breakpoints in the my_uart_driver Device Driver
This section demonstrates the use of breakpoints to examine HAL device driver
activity. Perform the following steps:

1. After importing the hello_world_my_uart project, open the my_uart_init.c device
driver source file, located in the hal_my_uart project, at the following directory:

<my_design>/software_examples/bsp/hal_my_uart/drivers/src/my_uart_init.c

2. Place a breakpoint at the top of the function named my_uart_irq(), as shown in
Figure 19.

3. Restart nios2-terminal if it is not already running.

4. Create a debug configuration for hello_world_my_uart by following the steps in
“Debugging the bit_bang_uart Project” on page 9, Step 3 through 8, and
substituting the hello_world_my_uart application for the bit_bang_uart
application.

5. Start debugging the hello_world_my_uart application. The processor pauses at
the top of function main().

Page 28 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

6. Click the Resume button. The Nios II processor pauses at the my_uart_irq()
invocation.

7. Step up to and over the following assignment of the status register:

status = IORD_MY_UART_STATUS(base);

8. In the Variables view, set the format of the status variable to hex. You can see that
the status register now holds the value 0x60. This value indicates bits 5 and 6 are
set. According to the my_uart_driver register description in
drivers/inc/my_uart_regs.h, these two bits indicate transmit ready and transmit.
The UART driver is in an interrupt context, ready to transmit the first character of
the string "Hello from Nios II!".

9. Continue stepping through the procedure. The my_uart_irq() function invokes
my_uart_txirq() in response to a transmit interrupt.

Press Resume after each character is transmitted. Stop after the entire string
“Hello from Nios II!” is transmitted.

10. Remove the breakpoint.

Figure 19. Setting a Breakpoint on my_uart_irq()

Debugging the HAL UART Device Driver Page 29

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

1 After you pause the debugger in an ISR, the rest of the system is in an unknown state,
because it could not respond to other interrupt requests while paused in the driver.
Therefore, you need to start a new debugging session to perform further debugging.

Setting Watchpoints in the HAL UART Device Driver
In this section, you intercept the Nios II processor by placing a watchpoint on a UART
peripheral register. A watchpoint is a special breakpoint that pauses the execution of
an application whenever the value of a given expression changes. To watch for any
writes to the transmit register on the UART, you can set up a write-access watchpoint
on the register.

1 To use watchpoints, you must configure the Nios II processor’s JTAG debug module
to level 2 or higher. This setting enables two data triggers, which are required for
watchpoints. The hardware design example accompanying this application note is
configured with debug level 2. You can specify a higher debug level to get four data
triggers, enabling four simultaneously-available watchpoints. Configure the JTAG
debug level in the Nios II processor parameter editor in Qsys, on the JTAG Debug
Module page.

To set a watchpoint, perform the following steps:

1. Start the debugging session for the hello_world_my_uart project.

2. Open the Breakpoints view. If the Breakpoints view is not visible, open it through
the Window menu, by pointing to Show View and clicking Breakpoints.

3. Open the menu by clicking the drop-down arrow in the upper right corner of the
view, and click Add Watchpoint (C/C++).

4. In the Add Watchpoint dialog box, type a value in the Expression to watch field
that equals the uart1 base value plus an offset of one long word. This value
accesses the transmit register. In the case of the design example accompanying this
application note, this value is 0x84.

5. In the Access section, turn on Write and turn off Read.

6. Click OK. The Add Watchpoint dialog box closes.

Page 30 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

7. Click the Resume button.

The Nios II processor executes until it writes the first character, H. The processor
writes this character when the my_uart_txirq() function invokes the macro
IOWR_MY_UART_TXDATA(), as shown in Figure 20.

View the transmit register value in the Eclipse Memory view. Notice that the value
changes when the debugging stops at the watchpoint.

Look at the call stack in the upper left corner of the Nios II Debug perspective. The
call stack records each call leading up to this point, including each function
invoked to process the transmit interrupt. The
alt_shadow_non_preemptive_interrupt() function calls my_uart_irq().

Reducing Driver Code and Memory Footprint
The Nios II SBT provides BSP settings to configure the HAL. You manipulate these
settings through the BSP Editor, or with the --set parameter to nios2-bsp.

f The Nios II SBT settings are described in “Settings” in the Nios II Software Build Tools
Reference chapter in the Nios II Software Developer's Handbook.

Figure 20. Setting Watchpoints in the UART's Transmit Register

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Debugging the HAL UART Device Driver Page 31

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

The Reduced device drivers and Lightweight device driver API options are of
particular interest, because they reduce the code and data footprint at the expense of
device driver functionality. Additionally, they set #define parameters that the
my_uart_driver device driver needs to examine and handle. The setting values are
documented in the summary.html file generated by nios2-bsp, in
<my_design>/software_examples/bsp/hal_my_uart.

Using the Reduced Device Drivers API Option
The Reduced device drivers option generates a #define statement for
ALT_USE_SMALL_DRIVERS. To turn on this option, set
hal.enable_reduced_device_drivers to true. Setting this option has the following
effects on correctly-written UART device drivers:

■ Sets #define ALT_USE_SMALL_DRIVERS

■ Activates polled mode only for the UART device

■ Disables floating-point support in printf() and sprintf()

■ Configures drivers to ignore flow control.

Figure 21 shows excerpts from the summary.html file generated by the SBT for a BSP
with reduced device drivers enabled.

f For more information about the Reduced device drivers option, refer to “Reducing
Code Footprint” in the Developing Programs Using the Hardware Abstraction Layer
chapter and to “Reducing Code Footprint” in the Developing Device Drivers for the
Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

Figure 21. hal.enable_reduced_device_drivers in summary.html

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Page 32 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Using the Lightweight Device Drivers API Option
The Lightweight device driver API option generates a #define statement for
ALT_USE_DIRECT_DRIVERS. To turn on this option, set
hal.enable_lightweight_device_driver_api to true. Setting this option has the
following effects on correctly-written UART device drivers:

■ Sets #define ALT_USE_DIRECT_DRIVERS.

■ Eliminates the option of using a file system. File descriptors cannot be created.

■ Disables stdio device descriptor redirection. alt_main() cannot call
alt_io_redirect().

■ Disabling the open() and close() functions. Attempting to call these functions
generates a link time error.

■ Causes direct calls to your UART device driver using macros, bypassing the device
manipulation function invocations normally accessed through the file descriptor
structure. The macros are defined in alt_driver.h, which is in the BSP folder, in
HAL/inc/sys.

For example, a call to alt_putstr() is normally treated as a call to the run-time library
function fputs(). With lightweight device drivers enabled, alt_putstr() is
translated to ALT_DRIVER_WRITE() (defined in alt_driver.h) and state-obtaining
macros. The ALT_DRIVER_WRITE() macro in turn calls the ALT_DRIVER_FUNC_NAME()
macro (also defined in alt_driver.h), and eventually ALTERA_AVALON_UART_WRITE(),
which is defined in the altera_avalon_uart_write.c driver file for the UART, where the
UART is defined for stdout. Calling ALT_DRIVER_FUNC_NAME(uart1, write) returns
ALTERA_AVALON_UART_WRITE.

ALT_USE_DIRECT_DRIVERS is dual-purposed in the my_uart_driver device driver. It
provides a convenient way to map the names of the ALTERA_AVALON_UART_INIT() and
ALTERA_AVALON_UART_INSTANCE() macros, which are tied to the component name, to
names that are specific to the my_uart_driver device driver. This setting of
ALT_USE_DIRECT_DRIVERS already maps ALTERA_AVALON_UART_INIT() and
ALTERA_AVALON_UART_INSTANCE() to macros that change based on the setting of
ALT_USE_DIRECT_DRIVERS in altera_avalon_uart.h. At the same time, the
ALTERA_AVALON_UART_INIT() and ALTERA_AVALON_UART_INSTANCE() macros have the
ALTERA_AVALON portion of their names change to MY_UART. The resulting four macro
name mappings are MY_UART_DEV_INIT(), MY_UART_STATE_INIT(),
MY_UART_DEV_INSTANCE(), and MY_UART_STATE_INSTANCE().

Debugging the HAL UART Device Driver Page 33

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

Figure 22 shows excerpts from the summary.html file generated by the SBT for a BSP
with lightweight device drivers enabled.

f For more information about the Lightweight device driver API option, refer to
“Reducing Code Footprint” in the Developing Programs Using the Hardware Abstraction
Layer chapter and to “Reducing Code Footprint” in the Developing Device Drivers for
the Hardware Abstraction Layer chapter of the Nios II Software Developer's Handbook.

Interrupt Latency and Determinism
This section discusses the crucial topics of interrupt latency and determinism. For the
purposes of this discussion, you need to be familiar with the following concepts:

■ Interrupt latency—The difference between the time that a component instance
asserts an interrupt and the execution of the first instruction at the interrupt vector
address. This instruction is typically part of the interrupt funnel, rather than the
interrupt handler itself.

■ Interrupt response time—The time elapsed between the event that causes the
interrupt and the execution of the handler.

■ Determinism—An attribute of a piece of source code that is guaranteed to execute
within a fixed amount of time. Overall interrupt latency impacts the deterministic
behavior for all source code in the system for which interrupts are not disabled.

f For more information, refer to “Nios II Exception Handling Overview” in the
Exception Handling chapter of the Nios II Software Developer's Handbook.

Figure 22. hal.enable_lightweight_device_driver_api in summary.html

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Page 34 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

To minimize interrupt latency, thus directly improving system determinism, follow
these guidelines:

■ In the software ISR, perform the minimum processing necessary to clear the
interrupt.

■ Complete noncritical-section interrupt processing outside of the interrupt context.
If your software is based on an operating system, a high priority task can be
pending on an event flag. The ISR posts to the event flag, notifying the task to
complete interrupt processing.

■ Use an External Interrupt Controller (EIC), such as the VIC used in the hardware
design for this application note.

If it is not possible to use an EIC, you can improve the performance of the internal
interrupt controller (IIC) by using the interrupt vector custom instruction.

1 The interrupt vector custom instruction is not compatible with the EIC
interface. The performance of the IIC with the interrupt vector custom
instruction is generally inferior to the performance of the VIC.

■ Use shadow register sets

■ To achieve the lowest possible interrupt latency, consider using tightly-coupled
memories so that interrupt handlers can run without cache misses.

f For information about using the EIC and shadow register sets, or the interrupt vector
custom instruction, refer to “Improving ISR Performance” in the Exception Handling
chapter in the Nios II Software Developer's Handbook and “Exception and Interrupt
Controllers” in the Processor Architecture chapter in the Nios II Processor Reference
Handbook. For information about tightly coupled memory, refer to the Using Tightly
Coupled Memory with the Nios II Processor Tutorial.

f For details of the interrupt vector custom instruction implementation, refer to the
“Exception and Interrupt Controllers” section in the Processor Architecture chapter of
the Nios II Processor Reference Handbook.

f For more information about tightly-coupled memories, refer to the “Tightly-Coupled
Memory” section in the Processor Architecture chapter of the Nios II Processor Reference
Handbook.

1 Restrict the use of synchronization resources to post-function calls. Do not call the
following types of functions from within an ISR:

■ Functions and macros, such as ALT_SEM_PEND(), that explicitly wait for a
resource

■ Library functions, such as printf(), that might wait for a resource

■ Other functions that wait for resources

Calling these types of functions from an ISR can have serious consequences, from
the destruction of overall system latency to complete system deadlock.

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

Debugging the HAL UART Device Driver Page 35

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

Avoid using alt_irq_interruptible(), which can enable ISR nesting, but is likely to
worsen interrupt latency (unless the ISR is abnormally long) because of the interrupt
context switch overhead. If the ISR is lengthy, instead of making it interruptible,
consider moving much of the less time-critical processing of the interrupt outside of
the ISR to a task. Write the ISR to do only as much as is required to clear the interrupt
and capture state so that the hardware can proceed, and then signal a task to complete
processing of the interrupt request.

Debugging with the Altera Logging Functions
The Altera logging functions are a very useful mechanism for debugging device
drivers. Altera logging uses macros to bypass the HAL driver and access the
peripheral directly. As a result, software can print debugging messages during the
boot process before the devices are initialized.

You do not need to regenerate the .sopcinfo file in Qsys or recompile the .sof image in
the Quartus II software.

Another advantage of Altera logging is that you can disable it without modifying
your source code. You simply change a BSP setting and recompile, leaving zero
residual impact in the compiled and linked application .elf file. All the Altera logging
mechanisms are macros, and so the compiler eliminates them when they are not
enabled. As a result, you can leave these calls to obtain debugging information in the
source code for your released final product, with no loss of speed or code memory
space. Compiling with Altera logging disabled creates a .elf file identical to a .elf
compiled from source code without the Altera logging macros.

1 When Altera logging is enabled, the behavior of the application might be less
deterministic, due to the collection and output of Altera logging messages.

Altera Logging Usage
You enable Altera logging with the hal.log_port BSP setting. This setting causes the
SBT to define ALT_LOG_ENABLE in public.mk. You set the logging level with
ALT_LOG_FLAGS.

You can add Altera logging diagnostic messages to your code by invoking
ALT_LOG_PRINTF(), a macro that handles most printf() formatting options.

Writes to the Altera logging device are blocking. Therefore, when hal.log_port is set
to a component instance of type altera_avalon_jtag_uart, you must run an application
to accept the Altera logging output in order for the Nios II application to complete
initialization. Otherwise, the application pends on an ALT_LOG_PRINTF() statement
until the Altera logging device's output buffer can be drained.

You can handle the JTAG UART logging output in either of the following ways:

■ Run your application in the Nios II SBT for Eclipse. JTAG UART logging output
appears in the Nios II Console view.

■ Run your application from the Nios II Command Shell, with the nios2-download
command. From another Nios II Command Shell, run nios2-terminal to accept the
JTAG UART logging output.

Page 36 Debugging the HAL UART Device Driver

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

You can disable the Altera logging feature by setting the hal.log_port setting in the
BSP to none. This is the default setting. In the example BSP, hal_my_uart, the
create-this-bsp script initially sets hal.log_port to jtag_uart. You can enable and
disable it in the BSP Editor. After regenerating a BSP, you can check the value of
hal.log_port in summary.html, located in the bsp/hal_my_uart folder.

Disabling Altera logging has the effect of leaving ALT_LOG_ENABLE undefined in
bsp/hal_my_uart/public.mk. When this feature is disabled, the application does not
pend on ALT_LOG_PRINTF() statements, even when no terminal capable of receiving
Altera logging output is connected.

You can leave your ALT_LOG_PRINTF() debugging statements in the final source code
version intended for production release, provided you set hal.log_port to none. With
this setting, the definition of ALT_LOG_PRINTF() is empty, and so the compiler
effectively removes these macro invocations. They have no impact on code footprint
or performance unless you re-enable Altera logging.

f For complete information about using the Altera logging functions, refer to “Using
Character-Mode Devices” in the Developing Programs Using the Hardware Abstraction
Layer chapter in the Nios II Software Developer's Handbook.

Altera Logging Example
The example applications, bit_bang_uart and hello_world_my_uart, and the
example BSP, hal_my_uart, use the Altera logging functions.

To see an example of Altera logging, run or debug hello_world_my_uart. You can see
the logging messages in the Nios II Console view, as shown in Figure 23.

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Conclusion Page 37

July 2011 Altera CorporationGuidelines for Developing a Nios II HAL Device Driver

You enable Altera logging by setting the hal.alt_log_flags BSP setting to 3. Refer to
the create-this-bsp script in the bsp/hal_my_uart directory for an example.

Conclusion
By dissecting the Altera_Avalon_UART component and the my_uart_driver HAL
software device driver, and examining the UART status register bit manipulation at a
fine-grained level of detail, you gained insight into the HAL device driver
development process. You now have the tools necessary to develop and debug at this
low level of the system, close to the hardware. Your set of tools includes analysis and
debugging techniques for tackling even the most elusive and deterministic embedded
software specification deviations.

With your new knowledge about the HAL's facilities, and with the array of techniques
for debugging and development described in this document, you are now better
prepared to write HAL software device drivers for your own embedded system's
components. You can also apply these tools at higher levels in the software hierarchy.

Figure 23. Altera Logging Output for hello_world_my_uart.c with ALT_LOG_FLAGS=3

Page 38 Document Revision History

July 2011 Altera Corporation Guidelines for Developing a Nios II HAL Device Driver

Document Revision History
Table 1 shows the revision history for this document.

Table 1. Document Revision History

Date Version Changes

July 2011 4.0 Updated instructions and design example for Qsys

January 2010 3.0

■ Update for the Nios II Software Build Tools for Eclipse

■ Update the examples to run on the NEEK

■ Update the design example to use the EIC and VIC

■ Update the software examples to use the HAL enhanced interrupt API

November 2008 2.0

■ Nios II version 8.0 upgrade, adaptation of the Altera_Avalon_UART device driver to
become the my_uart_driver device driver

■ Nios II Software Build Tools conversion for my_uart IP, hal_my_uart BSP, and
bit_bang_uart and hello_world_my_uart applications

■ Changed size of document to 8.5 x 11 inches

August 2007 1.0 Initial release.

	Guidelines for Developing a Nios II HAL Device Driver
	Prerequisites for HAL Device Driver Development
	Using the HAL Architecture and Services
	Software Requirements for the Driver Example
	HAL Device Drivers and Components

	Developing the HAL UART Device Driver
	Preparing the bit_bang_uart Application and hal_my_uart BSP
	Preparing the my_uart_driver Device Driver
	Configuring the Altera_Avalon_UART Component
	Importing Projects
	Understanding the Example Software
	Preview: Customizing the Design
	Making Software Modifications
	Making Hardware Modifications

	Debugging the bit_bang_uart Project
	The BitBangUartTransmit() Function
	The BitBangUartReceive() Function
	Creating Device Hardware Access Macros
	Staging the HAL Device Driver Development
	Understanding the Hardware-Specific INSTANCE and INIT Macros
	Integrating a New HAL Device Driver in the BSP
	Understanding HAL Mutual Exclusion Resources
	Overview of Debugging Tools for HAL Device Drivers
	Debugging the HAL UART Device Driver
	Setting Breakpoints in the my_uart_driver Device Driver
	Setting Watchpoints in the HAL UART Device Driver
	Reducing Driver Code and Memory Footprint
	Using the Reduced Device Drivers API Option
	Using the Lightweight Device Drivers API Option

	Interrupt Latency and Determinism
	Debugging with the Altera Logging Functions
	Altera Logging Usage
	Altera Logging Example

	Conclusion
	Document Revision History

