Intel and GE Healthcare Partner to Advance AI in Medical Imaging

GE Healthcare used Intel® Vision technology to develop an AI algorithm that can help medical staff triage potentially life-threatening cases faster.

When it comes to diagnosing critical patient conditions, every second matters. That's why GE Healthcare and Intel developed X-ray solutions intended to detect life-threatening conditions in seconds, optimize workflows, and better prioritize critical cases to improve the speed and accuracy of medical imaging.

New X-Ray Intelligence Promises Improved Patient Care

How could artificial intelligence (AI) be used to advance medical imaging and improve patient outcomes? That was the question GE Healthcare sought to answer by immersing itself in hospital workflows. They interviewed radiologists and technologists and observed operations across the hospital to determine how staff uses X-ray equipment.

Next, hospital staff were asked to identify which of X-rays many uses would benefit most from AI. The answer was clear: they wanted AI to help improve the handling of cases involving critical findings to better treat patients. Specifically, they sought assistance with those conditions that, while not common, could lead to life-threatening consequences if overlooked.

Another pain point was the current first-in-first-out workflow, which commonly resulted in long turn-around times (TATs), even among cases designated as emergency or stat. The practice created a queue of stat cases with little clarity about which were to be addressed first. Users wanted a solution that would help ensure that the right person evaluated the X-ray at the right time, enabling the best possible patient care.

GE Healthcare's Critical Care Suite Embeds AI on the Device

In response to the needs of its customers, GE Healthcare developed its Critical Care Suite, a set of AI algorithms built to detect critical findings on a chest X-ray. Available on Optima XR240amx systems, the solution represents a significant step forward for the analysis of X-rays, which account for about 50 percent of medical imaging today.2

"What's different about what GE Healthcare is doing is it's a first-of-its-kind AI algorithm that's embedded on the imaging device," said Todd Minnigh, CMO X-Ray, GE Healthcare. "So, the thing that's actually capturing the images is also doing the processing. It's not in the cloud and not on a server downstream somewhere. It can detect and enable providers to prioritize critical conditions, so cases can be more quickly flagged."

Running the algorithm at the point of care on the same Intel® processor-based systems conducting the X-rays enables the hospital to identify key findings faster. AI findings of potential critical conditions are sent to the radiologist at the same time as the original image is sent to the picture archiving and communication system (PACS). Plus, the ability to identify and flag quality issues in real time allows the technologist to determine if an image should be repeated or reprocessed while the patient is still in the lab.

All of this can mean quicker access to results for anxious patients, easier reprioritization of workloads for busy medical professionals, and potentially improved patient outcomes.

GE Healthcare sought to test the solution by addressing one especially challenging use case that uses X-rays to examine for pneumothorax, a life-threatening, difficult-to-detect condition in which air or gas has entered the cavity between the lungs and the chest wall, causing the lung to collapse.

What's different about what GE Healthcare is doing is it's a first-of-its-kind AI algorithm that's embedded on the imaging device. It's not in the cloud and not on a server downstream somewhere. It can detect and enable providers to prioritize critical conditions, so cases can be more quickly flagged."

Todd Minnigh, CMO X-Ray, GE Healthcare

Intel Helps GE Healthcare Accelerate Pneumothorax Detection on the Optima XR240amx X-Ray System by More Than 3x1

Today, most AI solutions targeting hospital workflows are located in the cloud or on a hospital server. With the Critical Care Suite, GE Healthcare wanted to minimize cost, shorten installation time, and reduce security vulnerabilities.3 Every second counts, so processing and intelligence were located in the imaging device itself, thereby avoiding unnecessary delays. It also negated the need for replacement or supplementary infrastructure. 

The goal of the Critical Care Suite is to optimize the frontal chest and lung field position in X-rays while expediting delivery of the results of the pneumothorax inferencing once the image has been captured. Moving the compute intelligence to the machine level would allow for fast workflows and enable radiologists to rapidly process results for anxious patients looking for peace of mind.

For support, GE Healthcare turned to Intel and its computer vision tools. Intel shared the commitment to improve the speed of GE X-ray devices and deliver higher-quality X-ray imaging to enhance patient care and outcomes. Intel helped optimize the Critical Care Suite algorithms using the Intel® Distribution of OpenVINO™ toolkit. The toolkit provided computer vision and deep learning inference tools, including convolutional image-based classification models optimized for the Intel® processors used in GE Healthcare imaging systems. 

The move to the Intel® Distribution of OpenVINO™ toolkit improved performance across all models, with the pneumothorax model receiving the most benefit with inferencing time dropping from more than three seconds to under one second.1 Pneumothorax inferencing on the Optima XR240amx X-ray system accelerated by 3.3x compared to inferencing without optimizations.1 Intel also helped train the GE Healthcare team to get the most out of its algorithm going forward. 

"Key to anyone's success is you want to pick partners who are on the journey to help you be successful," said Katelyn Nye, X-ray Global Product Manager, Artificial Intelligence, and Analytics, GE Healthcare. "And Intel definitely did that for us."

Also important to GE Healthcare was being able to serve its large install base of Intel-run systems. The AI-powered innovation needed to be available to all through software upgrades or via a clear hardware upgrade path for older systems. 

"For AI solutions to be adopted, they should integrate with existing workflows," said Nye. "You don't want to add any overhead or burden. GE Healthcare's approach to building intelligent machines is avoiding any additional steps, workflow, or infrastructure if the task can be performed with what the customer already has today."

Uncovering Small Issues Before They Become Big Ones

In addition to the AI-based pneumothorax solution, GE Healthcare wanted AI applications that helped technologists further contribute to improved patient care. That commitment led to the development of three additional quality-based algorithms designed to help guide or coach the technologist, regardless of their level of experience.

One example is the new intelligent autorotate algorithm. Technologists have typically been required to manually rotate images to achieve the proper orientation. Estimates suggest that automating that task alone will save technologists approximately 70,000 button clicks a year, or up to three full working days.4

GE Healthcare's mission is to continue to find X-ray-related tasks that can be automated. In this way, they can unlock data insights faster and free the technologist to move more quickly through the 50 petabytes of data that hospitals now produce each year.5

Working together, GE Healthcare and Intel understand that faster, higher-quality X-ray imaging can lead to more productive staff, better care, and a healthier world.

Explore How Intel and Our Partner Solutions Are Advancing Healthcare

Cloud-Based Healthcare

Designed to aggregate all kinds of health data, connect these data with a global network of healthcare stakeholders, and offer a broad range of AI & analytics apps.

Read the article

Ready-to-Deploy Solutions

Intel® IoT Market Ready Solution (Intel® IMRS) are ready-to-deploy solutions that deliver an impact right away.

See the solutions

Accelerating Results in Healthcare

Accelerate Healthcare transformation by harnessing the power of Intel® technology.

Learn more

Think Small for Big Results. Everything Matters

See how Intel® Vision technologies are helping companies across industries see it all.

Learn more


Intel® 技術的功能與優勢取決於系統配置,而且可能需要支援的硬體、軟體或服務啟動才能使用。實際效能會依系統組態而異。沒有電腦系統能提供絕對的安全性。詳情請洽詢購入系統的製造商或零售商,或是上網參閱 效能測試中使用的軟體與工作負載,可能只有針對 Intel® 微處理器進行效能最佳化。包括 SYSmark* 與 MobileMark* 在內的效能測試是使用特定電腦系統、零組件、軟體、作業與功能進行測。這些因素若有任何異動,均可能導致測得結果產生變化。考慮購買時,為了協助您充分評估,您應該參考其他資訊及效能測試,包括該產品結合其它產品使用時的效能表現。如需更完整的資訊,請造訪 效能結果係根據截至組態中所示日期的測試,可能無法反映所有公開提供的安全性更新。請查看組態公開資料以獲得詳細資訊。沒有產品或元件能提供絕對的安全性。// 所述之成本降低情境,用意是要提供範例,指出搭載特定 Intel® 處理器的產品,在特定情況與配置,可能會如何影響未來各項成本以及提供成本節省。實際情況可能有所差異。對於各項成本,或是成本降低幅度,Intel 不提供任何保證。// Intel 並不控制或稽核本文件提及的第三方效能標竿資料或網站。您應造訪該網站並確認本文件提及的資料是否正確。// 部分測試案例結果係採用 Intel 內部分析或架構模擬或模型進行預估或模擬,僅供參考之用。系統硬體、軟體或配置如有任何差異,都可能會影響實際的效能表現。


1System test configuration disclosure: Intel® Core™ i5-4590S CPU @ 3.00GHZ, x86_64, VT-x enabled, 16GB memory, OS: Linux magic x86_64 GNU/Linux, Ubuntu 16.04 inferencing service docker container. Testing done by GE Healthcare, September 2018. Test compares TensorFlow model total inferencing time of 3.092 seconds to the same model optimized by Intel® Distribution of OpenVINO™ toolkit optimized TF model resulting in a total inferencing time of 0.913 seconds.
2Kellner, Tomas, "Data Vision: This X-Ray App Could Help Hospitals Cut Costs," GE Reports, November 26, 2017:
3Intel® technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at
4Younis, K., Soni, R., Zhang, M., Akram, N., Vera, Nye, K., G., Rao, G., Avinash, G., and John Sabol (2019). Leveraging Deep Learning Artificial Intelligence in Detecting the Orientation of Chest X-ray Images. Society for Imaging Informatics in Medicine (SIIM), Conference on Machine Intelligence in Medical Imaging (C-MIMI), oral presentation.
5 "Beyond Imaging: The Paradox of AI and Medical Imaging Innovation," The Pulse, September 24, 2018: