Genome Analysis Tool Kit* (GATK*)

A software package developed at the Broad Institute to analyze next-generation sequencing data.

Infrastructure for Deploying GATK Best Practices Pipeline

The Broad Institute GATK Best Practices pipeline has helped standardize genomic analysis by providing step-by-step recommendations for performing pre-processing and variant discovery analysis. Pre-processing refers to generating analysis-ready mapped reads from raw reads using tools like BWA*, Picard* tools, and the Genome Analysis Tool Kit. These analysis-ready reads are passed through the Variant Calling step of Variant Discovery analysis to generate variants per-sample. The first part of the GATK Best Practices pipeline takes two FASTQ files, a reference genome, and dbSNP and 1000g_indels VCF files as input and outputs a gVCF file per-sample. These gVCF files are then further analyzed using Joint Genotyping and Variant Filtering steps of the Variant Discovery analysis.

The tools mentioned in the GATK Best Practices Pipeline require enormous computational power and long periods of time to complete. Benchmarking such a pipeline allows users to better determine the recommended hardware and optimize parameters to help reduce execution time. In an effort to advance the standardization and optimization of genomic pipelines, Intel has benchmarked the GATK Best Practices pipeline using Workflow Profiler, an open-source tool that provides insight into system resources (such as CPU/Disk Utilization, Committed Memory, etc.) and helps eliminate resource bottlenecks.

Performance Results

By using the recommended hardware and applying the thread-level and process-level optimizations to the single sample Solexa-272221 WGS* dataset, we achieve different levels of performance. The chart to the right shows how the execution time scales with the number of threads and processes across various pipeline components. For this particular dataset, all components show a decrease in run time going from 1 to 36 threads. Overall, the execution time from BWA-MEM* to Haplotype-Caller went from 227 hours to 36 hours, a 6x speed-up.1 These performance guidelines can be used to size genomics clusters running GATK Best Practices pipelines.

This benchmarking study provides recommendations of Intel® hardware and guidelines on running a set of whole genome sequences through the GATK Best Practices pipeline. Researchers whose aim is to use this pipeline for multiple datasets may use this paper to scale the number of machines to match the number of datasets that require analysis. For example, an institution whose aim is to analyze 100 WGS a month may need about 5 machines (each with 36 cores) running in parallel to achieve this goal.

Download the code ›

Size and scale your infrastructure according to your workloads with the GATK reference architecture ›

產品與效能資訊

1

效能標竿結果是在實施最近的軟體修補程式與韌體更新以解決「Spectre」和「Meltdown」安全漏洞之前取得的資料。實施這些更新可能會讓這些結果變得不適用於您的裝置或系統。

效能測試中使用的軟體與工作負載可能僅針對 Intel® 微處理器進行最佳化。包括 SYSmark* 與 MobileMark* 在內的效能測試是使用特定電腦系統、零組件、軟體、作業與功能進行量測。這些因素若有任何異動,均可能導致測得結果產生變化。建議您參考其他資訊與效能測試數據,協助您充分評估欲購買產品的性能,包括該產品在搭配其他產品運作時的效能。如需完整的資訊,請參閱 http://www.intel.com.tw/benchmarks