跳到主要內容
Intel 標誌:返回首頁
我的工具

選擇您的語言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登入 以存取限制內容

使用 Intel.com 搜尋功能

您可以利用數種方式輕鬆搜尋整個 Intel.com 網站。

  • 品牌名稱: 酷睿i9
  • 文件編號: 123456
  • Code Name: Emerald Rapids
  • 特殊運算子: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速連結

您也可以試試以下快速連結,查看熱門搜尋結果。

  • 產品資訊
  • 支援
  • 驅動程式和軟體

最近的搜尋

登入 以存取限制內容

進階搜尋

僅在以下條件搜尋:

Sign in to access restricted content.
  1. Streamline Deep-Learning Integration

不建議本網站使用您正在使用的瀏覽器版本。
請考慮通過按下以下連結之一升級到最新版本的瀏覽器。

  • Safari
  • Chrome
  • Edge
  • Firefox

下載 PDF
下載 PDF

Streamline Deep Learning Integration

Intel factories are using the Intel® Distribution of OpenVINO™ toolkit to streamline deep-learning integration with the factories' computer vision automatic defect-classification systems.

Intel factories have been using computer vision for over a decade to automate defect detection and classification. The factories use TensorFlow* as the core open source library to help develop and train deep-learning models. However, the interface between the computer vision systems and TensorFlow is cumbersome and requires days of custom programming from data scientists.

The Intel® Distribution of OpenVINO™ toolkit significantly streamlines this interface. Therefore, Intel IT has found it to be the most convenient and fastest way to deploy deep learning (in particular, deep neural networks) in the Microsoft* Windows environment.

  • The OpenVINO™ toolkit helps data scientists more easily interface with powerful back-end deep-learning engines like TensorFlow.
  • This frees up data scientists to use their time more productively.
  • There is no unique hardware to deploy—the OpenVINO™ toolkit runs on existing Intel® Xeon® processor-based servers.
  • Because it is optimized for Intel® hardware, the OpenVINO™ toolkit boosted model inference performance by 10x, according to internal Intel IT measurements.

When Intel IT began using the OpenVINO™ toolkit, they weren't concerned with inference speed. However, the 10x performance increase that they experienced is an added benefit and opens up additional use cases. For example, they are now exploring the use of OpenVINO for real-time process control, which requires millisecond response times. They are currently working with the OpenVINO development team to add the necessary temporal convolutional network model into the Model Zoo.

Intel IT is committed to making Intel's manufacturing processes as accurate and efficient as possible. Computer vision was an important step in achieving those goals. Now, the OpenVINO™ toolkit helps save time so that highly qualified engineers can accomplish more productive tasks, rather than coding a cumbersome interface to TensorFlow. OpenVINO helped Intel IT simplify development and optimize TensorFlow for top performance.

相關影片

顯示更多 顯示較少

相關資料

  • 公司資訊
  • 我們的承諾
  • 包容
  • 投資人關係
  • 聯絡我們
  • 新聞室
  • 網站索引
  • Intel 徵才項目
  • © Intel 公司
  • 使用條款
  • *商標
  • 供應鏈透明
  • Cookies
  • 保密政策
  • 請勿分享我的個人資訊 California Consumer Privacy Act (CCPA) Opt-Out Icon

Intel 技術可能需要搭配支援的硬體、軟體或服務啟動。// 沒有產品或元件能提供絕對的安全性。// 您的成本和成果可能有所落差。// 效能因使用情形、配置和其他因素而異。請造訪 intel.com/performanceIndex 進一步瞭解。// 請參閱我們完整的法律通知與免責聲明。// Intel 承諾致力於尊重人權,並極力避免成為侵害人權的共謀。請參閱 Intel 的全球人權原則。Intel 產品和軟體的應用必須避免導致或對國際公認人權造成侵害。

Intel 頁尾圖誌